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ABSTRACT

We address the challenge of automatically generating high-quality vector dia-
grams from hand-drawn sketches. Vector diagrams are essential for communicat-
ing complex ideas across various fields, offering flexibility and scalability. While
recent research has progressed in generating diagrams from text descriptions, con-
verting hand-drawn sketches into vector diagrams remains largely unexplored due
to the lack of suitable datasets. To address this gap, we introduce SKETIkZ, a
dataset comprising 3,231 pairs of hand-drawn sketches and thier corresponding
TikZ codes as well as reference diagrams. Our evaluations reveal the limitations
of state-of-the-art vision and language models (VLMs), positioning SKETIkZ as
a key benchmark for future research in sketch-to-diagram conversion. Along with
SKETIkZ, we present IMGTIkZ, an image-to-TikZ model that integrates a 6.7B
parameter code-specialized open-source large language model (LLM) with a pre-
trained vision encoder. Despite its relatively compact size, IMGTIkZ performs
comparably to GPT-4o. This success is driven by using our two data augmentation
techniques and a multi-candidate inference strategy. Our findings open promising
directions for future research in sketch-to-diagram conversion and broader image-
to-code generation tasks. SKETIkZ is publicly available.1

1 INTRODUCTION

Diagrams serve as powerful visual tools widely adopted across academic and professional domains
to communicate complex ideas effectively. They play a crucial role in clear communication and
knowledge transfer by distilling complex information into more accessible visual formats. Vector
graphics have become the standard medium for creating high-quality diagrams, primarily due to
their inherent scalability and precision. The ability to resize and modify vector diagrams without
degrading quality makes them especially valuable in academic and professional settings. These
characteristics enable researchers and professionals to adapt diagrams seamlessly across different
presentation formats and requirements, enhancing both the clarity and versatility of scientific com-
munication. While established tools and languages such as TikZ and Graphviz are popular for
creating high-quality vector graphics, they often require significant manual effort and specialized
expertise. Recent developments in large language models (LLMs), such as GPT-4o, have triggered
a growing interest in automating the generation of vector graphic diagrams from textual descrip-
tions (Belouadi et al., 2023; Zala et al., 2023; Zou et al., 2024). This emerging research area holds
significant potential to enhance the efficiency of diagram creation and improve accessibility to high-
quality visualizations. Despite the significant advancements in text-to-code generation, generating
diagrams from sketches remains largely unexplored. Sketch-based input often provides a more intu-
itive and user-friendly way to express visual ideas (Figure 1). This approach leverages the inherent
human ability to quickly and effectively communicate complex visual information through simple
drawings. A primary reason for the limited research in this area is the lack of publicly available
datasets that pair hand-drawn sketches with their corresponding codes. Such datasets are essential
for training and evaluating models that translate sketch-based input into structured diagram code.
To address this gap, we introduce SKETIkZ, a new dataset designed for benchmarking sketch-to-
diagram generation. SKETIkZ comprises 3,231 pairs of hand-drawn sketches and their correspond-
ing TikZ codes. The sketches were created using several tools commonly employed in real-world
scenarios: paper, whiteboards, and tablets. This diverse collection provides a valuable resource for

1https://sketikz.github.io/
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Figure 1: Overview of sketch-to-diagram. We consider scenarios where users hand-draw diagrams
that they want to create. Sketch-to-diagram models (e.g., VLM) take these sketches Is and pre-
defined instructions X and then generate code Y for producing vector graphics. Y is subsequently
rendered into generated image I . The process of text-to-diagram is also provided for comparison.

advancing research in automated diagram generation from sketches. SKETIkZ aims to facilitate
the development of models capable of generating high-quality diagrams from hand-drawn inputs for
real-world applications. We also developed IMGTIkZ, a Vision-Language Model (VLM) specifically
designed for this task. Our model combines three components: an open-source LLM specialized in
code generation, a vision encoder, and an adapter. This combination is intended to create a model
capable of efficiently converting sketches into TikZ code. We evaluated the effectiveness of two
strategies: expanding our dataset through data augmentation and employing an inference strategy
that generates multiple candidates and selects the best one. From the results, IMGTIkZ performed
comparably to GPT-4o in subjective evaluations despite having a relatively small model size of 6.7B
parameters. However, both IMGTIkZ and the latest state-of-the-art models still struggle to accu-
rately generate code that captures all elements and layouts of sketches, indicating the potential for
further advances. We aim for our dataset and findings to drive future research and development in
this field. Our contributions are summarized as follows:

• We introduce SKETIkZ: A new dataset containing 3,231 pairs of hand-drawn sketches and
their corresponding TikZ codes, addressing the lack of real-world data for sketch-to-vector
diagram conversion.

• We develop IMGTIkZ: An image-to-TikZ model that combines a 6.7B parameter code-
specialized LLM with a pre-trained vision encoder, achieving performance comparable to
larger models despite its modest size.

• We empirically demonstrate the effectiveness of two types of data augmentation and a
multi-candidate inference strategy.

2 RELATED WORK

Vision and language models With advancements in LLMs, significant progress has been made
in constructing VLMs that interpret images and generate text. A promising approach integrates
vision encoders like CLIP (Radford et al., 2021) with LLMs via adapter modules. This method has
demonstrated promising results (Liu et al., 2023; Dai et al., 2023; Ye et al., 2023; Zhu et al., 2023;
Li et al., 2024; Wang et al., 2024), efficiently creating VLMs that leverage the extensive knowledge
base of pre-trained models. In this study, along the same line as these approaches, we build a VLM
to generate TikZ code from images.

Image-to-code generation While VLMs are primarily designed to generate natural language out-
puts, such as answering questions and describing images, research on generating code for image
rendering—such as HTML, LaTeX, or SVG—has emerged as a valuable application. For instance,
recent studies have introduced models capable of generating LaTeX code from screenshots of math-
ematical formulas or handwritten images (Deng et al., 2016; Gervais et al., 2024), HTML code from
web page screenshots (Soselia et al., 2023; Si et al., 2024; Laurençon et al., 2024; Gui et al., 2024),
and SVG code from icon images (Rodriguez et al., 2023). While LaTeX code generation and TikZ
code generation are similar in terms of code output, our research tackles significantly more complex
problems than previous formula-to-LaTeX conversion studies. It involves much longer output se-
quences (739 tokens on average compared to 65 tokens in prior work) and requires an understanding
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Figure 2: Dataset construction process.

Table 1: Sketch Tool Usage Statistics.

Tool Number Proportion

Paper 2,545 78.8%
Whiteboard 346 10.7%
Tablet 340 10.5%

All 3,231 100%

of two-dimensional layouts. We introduce three key advances to handle this increased complexity:
code-specialized VLM, two data augmentation strategies, and multi-candidate generation.

Diagram understanding Understanding diagrams has been an important and long-standing re-
search topic, including question answering (Kembhavi et al., 2016; Lu et al., 2023; Wang et al.),
caption generation (Hsu et al., 2021; Singh et al., 2023; Huang et al., 2023), and generating de-
scriptions (Hu et al., 2023; Bhushan & Lee, 2022; Bhushan et al., 2024). Recent research proposed
benchmark datasets to assess not only the understanding of diagram images but also the direct com-
prehension of vector graphics code (Zou et al., 2024; Qiu et al., 2024). This expanding research area
reflects the growing interest in understanding vector graphics diagrams.

Diagram generation Ellis et al. (2017) proposed a model generating TikZ code for primitive ge-
ometric sketches, focusing on circles, rectangles, and lines without text. We extend the approach
to handle real-world diagrams with unrestricted shapes and text. Furthermore, our dataset reflects
realistic environments by including sketch images from various sources such as paper, whiteboards,
and tablets. Recent work has explored real-world diagram generation from text (Belouadi et al.,
2023; Zala et al., 2023). Belouadi et al. (2023) proposed a method for generating TikZ code to ren-
der diagram images from caption text. Generating diagrams through code synthesis provides better
controllability and editability than pixel-based image generation methods, while enabling LLM inte-
gration. Belouadi et al. (2023) also highlights the challenge of image-to-diagram generation, which
remains limited due to the scarcity of paired image-code data. Concurrent work by Belouadi et al.
(2024) addresses the task of generating diagrams from images, which is closely related to our task.
However, their evaluation of sketch-based generation is limited to a small dataset, which lacks cor-
responding TikZ code and thus cannot be used for image-to-code training. Our dataset provides
the largest and most diverse sketch-to-diagram dataset with TikZ code, captured under real-world
conditions. We also contribute novel data augmentation methods and multi-candidate generation
strategies, providing new insights for future research directions in this field.

3 DATASET AND TASK

3.1 TASK DEFINITION

We introduce a sketch-to-diagram task (Figure 1), where the input consists of a sketch image of
a diagram Is and a language instruction X , and the output is a sequence of TikZ code Y . Then
generated TikZ code Y are compiled to render the diagram image I .

3.2 DATASET CONSTRUCTION

We constructed our dataset in three steps: rendering, filtering, and sketch annotation (Figure 2).

Step 1: Rendering diagrams from TikZ code We first rendered diagrams from TikZ code in the
DaTikZ (Belouadi et al., 2023) by using pdflatex. We then paired the rendered reference diagrams
Ir with the corresponding TikZ code Yr. We refer to the rendered diagrams as the reference images.

Step 2: Diagram classification and filtering Diagrams can be classified into various categories,
as demonstrated by ACL-Fig (Karishma et al., 2023) with its 19-category dataset. For our sketch-to-
diagram task, we focused on diagrams composed of geometric shapes and arrows, excluding those
primarily based on numerical data. We specifically targeted diagrams categorized as Tree, Graph,
Architecture Diagram, Neural Networks, and Venn Diagram according to ACL-Fig labels. We chose
these categories because sketch-to-diagram generation is particularly effective for visually oriented
diagrams. These diagrams often involve complex combinations of shapes and interconnections,
making manual creation time-consuming and precise linguistic instructions challenging. Using an
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Figure 3: Examples of sketch images. Left: paper, Center: whiteboard, Right: tablet.

Table 2: Datasets used for training IMGTIkZ.

No Name Input Output Size Stage1 Stage2
1 arXiv figure Figure or table image OCR text 1.2M ✓
2 arXiv figure Figure or table image Caption text 1.1M ✓
3 LLaVA-Pretrain2 Multi-domain image Caption text 558K ✓
4 SKETIkZ Diagram sketch image TikZ source code 2.6K ✓
5 RenderTikZ Diagram image TikZ source code 155K ✓
6 AugTikZ Diagram image TikZ source code 556K ✓
7 ImgAugTikZ Noised Diagram image TikZ source code 714K ✓
8 DaTikZ-v23 Diagram image TikZ source code 46K ✓

image classification model trained on the ACL-fig dataset (details in Appendix E), we extracted and
sampled 4,000 diagram images from our targeted categories for annotation. We present the detailed
breakdown of categories in Table 10 and Figure 8 in Appendix E.

Step 3: Sketch data collection Twenty-eight annotators created sketch images Is on the basis of
filtered reference images Ir. Annotators used black pens primarily, with red, blue, and green for
colored elements, excluding complex diagrams and ignoring color filling. Regarding the sketching
tools, annotators freely selected an available option from paper, whiteboard, or tablet the basis of
their respective environments. Table 1 shows the distribution of sketches by tool, with the paper
being the most common. Figure 3 illustrates examples of sketch images drawn using each tool.
The dataset includes diverse sketches mimicking real-world scenarios, with paper and whiteboard
sketches showing varied lighting and backgrounds. We aligned sketches Is with corresponding
TikZ codes Yr and reference images Ir, creating a dataset of 2,585 training, 323 validation, and 323
test samples. More examples are shown in Appendix F

4 IMGTIkZ: VISION-LANGUAGE MODEL FOR IMAGE-TO-TIkZ GENERATION

4.1 MODEL STRUCTURE

We developed IMGTIkZ, a VLM specifically designed for this task using the model architecture of
LLaVA 1.5 (Liu et al., 2023). The model architecture comprises three key components: a code-
specialized LLM, a vision encoder, and an adapter, illustrated in Figure 4 (a). The model inputs a
diagram image and generates a corresponding TikZ code. We employed the same architecture as
LLaVA 1.5 for the adapter module - a simple two-layer multi-layer perceptron (MLP). While the
original LLaVA 1.5 uses a language model for natural language generation, we replaced it with a
6.7B instruction-tuned DeepSeek Coder (Guo et al., 2024) for code generation. For vision encoder,
we used SigLIP model Zhai et al. (2023). We trained our model in two stages: first updating only
the adapter parameters, then training both adapter and LoRA (Hu et al., 2021) parameters added to
the LLM. The LLM and vision encoder parameters remained frozen throughout training. For more
detailed information about the model hyperparameters, refer to Appendix B and Table 8.

4.2 TRAINING DATA

Datasets used in stage 1 training In stage 1 training, we incorporated arXiv figure data (No.
1 and 2 in Table 2) in addition to LLaVA-pretrain data (No. 3). This arXiv figure dataset was
created by extracting figures, tables, and captions from arXiv paper PDFs in arXiv bulk dataset

2https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
3https://huggingface.co/datasets/nllg/datikz-v2
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Figure 4: IMGTIkZ model structure (a) and multi-candidate generation process for inference (b).

using PDFFigure2.0.4 We also used Google Cloud Vision API5 to extract text from these images.
The arXiv data served two purposes: (1) generating optical character recognition (OCR) text from
images to improve text recognition and (2) generating captions from diagram images to enhance
diagram image understanding.

Datasets used in stage 2 training In the second stage of training, we focused on enhancing the
model’s ability to generate TikZ code. Given the limited size of the SKETIkZ dataset alone, we
supplemented our training data by creating pairs of rendered diagram images and TikZ code col-
lected from the arXiv source file in bulk data, which is referred to as RenderTikZ (No. 5). We
implemented two data augmentation techniques to increase diagram and image variations. First, we
generated TikZ code using GPT-3.5 to increase the variety of diagrams, referred to as AugTikZ (No.
6). Second, we applied an image augmentation technique, referred to as ImgAugTikZ (No. 7), to
simulate common sketch image noise such as background interference, lighting variations, and ro-
tation. In addition to these augmentation techniques, we also used existing pairs of TikZ code and
images (No. 8), excluding data with arXiv IDs that overlap with our collected dataset.

Data augmentation for increasing diagram variations While we collected approximately 916K
original TikZ codes from arXiv sources, many failed to be compiled during RenderTikZ creation.
We used GPT-3.5 to fix these compilation errors with a prompt such as “Please modify the code
to make it compilable.” To increase diagram variety, we instructed GPT-3.5 to modify the origi-
nal diagram into a different diagram, producing altered versions of the original diagrams. These
augmentation techniques resulted in 556K AugTikZ data samples. Previous data augmentation for
VLMs used other VLMs to generate instruction-response pairs from images, which was costly due
to image processing. Instead, we generate data efficiently by modifying only TikZ code using text-
based LLMs. This approach could be applied to various image-to-code tasks. More details are in
Appendix G.1.

Figure 5: Example of ImgAugTikZ.
Top: original image, bottom: aug-
mented image.

Data augmentation for increasing image variations
Hand-drawn sketch diagrams inherently contain more im-
age noise than rendered images. This noise can appear as
background interference or lighting variations when captur-
ing sketches from paper or whiteboards. Furthermore, hand-
written text and lines often exhibit significant distortions,
and diagrams are frequently stored with angular rotations.
To address these issues, we applied multiple image aug-
mentation techniques to RenderTikZ and AugTikZ datasets,
such as synthesizing notebook backgrounds, adding Gaus-
sian noise, varying brightness and contrast, and introducing
distortion. Figure 5 illustrates an example of the augmented
image. This augmentation approach is general-purpose and
can be applied to various sketch-to-diagram tasks. More de-
tails are in Appendix G.2.

4https://github.com/allenai/pdffigures2
5https://cloud.google.com/vision/docs?hl=en
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4.3 INFERENCE

We implemented two inference methods: iterative generation and multi-candidate generation. In the
paper, we refer to them as IMGTIkZ-IG and IMGTIkZ-MCG, respectively.

Iterative generation Iterative generation produces one candidate per test sample, regenerating
upon compilation failure until success. We set a maximum number of generation attempts M to
limit this process. This method is straightforward and can be considered a baseline approach.

Multi-candidate generation Multi-candidate generation creates K candidates simultaneously,
selecting the best one (Figure 4 (b)) using a selector model. In our study, we generate multiple
TikZ codes and render them as images. The selector selects the best candidate by maximizing the
similarity between the input sketch image Is and the generated diagram image I . As general vision
encoders cannot accurately measure diagram similarity, we propose D-SigLIP (Diagram-Specialized
SigLIP) as our selector. D-SigLIP adds a trainable linear layer to a pre-trained SigLIP model, and
we fine-tune only this layer through contrastive learning (Chen et al., 2020) with noise-augmented
diagram pairs from RenderTikZ and AugTikZ. More details are in Appendix C. To calculate the
similarity score, we computed the cosine similarity between the embedding vectors obtained by
inputting the sketch image Is and the generated diagram image I into D-SigLIP.
Our task requires generating lengthy code sequences (averaging 739 tokens), making producing
error-free code in a single-generation attempt challenging. Furthermore, since the model training
is based on next-token prediction loss for code sequences, metrics related to image quality are not
explicitly considered during code generation. The multi-candidate generation and selection strategy
allows us to evaluate these metrics after code generation, which could not be considered during
the training phase. While similar approaches have been proposed for text inference and coding
tasks (Brown et al., 2024), our work is the first to use image similarity for candidate selection in
image-to-diagram conversion.

5 EVALUATION METRICS

5.1 AUTOMATIC EVALUATION

We used four aspects of automatic evaluation: compilation success rate, image similarity, code
similarity, and character similarity.

Compilation success rate The compilation success rate (CSR) represents the percentage of gener-
ated TikZ codes that are successfully compiled into images. In this study, we employ two CSR met-
rics. The first is the averaged CSR, which calculates the ratio of successful compilations Nsuccess to
the total number of generation attempts Ngen, expressed as CSRavg = Nsuccess

Ngen
. This metric indicates

how often a model succeeds in compilation on average. The second is the cumulative CSR, which
represents the number of test samples that are compiled successfully through multiple iterations of
iterative generation. It is defined as the ratio of successfully compiled samples, Ntest success, to the
total number of test samples, Ntest, and is expressed as CSRcum = Ntest success

Ntest
. This metric shows

the proportion of test samples that are correctly compiled through multiple attempts during iterative
generation. Detailed examples are provided in Appendix J.

Image similarity We used cosine similarity between image embeddings to measure the similarity
between the generated image I and the reference diagram image Ir. We used our D-SigLIP (see
Sec. 4.3) for calculating image embeddings. We also calculated the image similarity score using
the original CLIP model; however, the similarity score computed with CLIP correlated less with
human evaluations than the similarity calculated using D-SigLIP. If the compilation failed, we set
the similarity score to 0.

Code similarity We used cosine similarity in the embedding space between Y and Yr. We gener-
ated the code embeddings using OpenAI’s text embedding model.6

Character similarity The character similarity calculates the similarity between the text in the
generated image I and the text in the reference image Ir using Rouge-1 score (Lin, 2004). We used
the OCR included in the Google Cloud Vision API to extract text. This metric indicates how well
the model can read and generate text from the sketch.

6We used text-embedding-3-small version.
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5.2 SUBJECTIVE EVALUATION

We conducted a subjective evaluation focusing on two key aspects: alignment and quality following
established practices in previous studies (Otani et al., 2023; Ku et al., 2023). In our study, alignment
measures the similarity between the generated and reference images, while quality assesses the
coherence and appropriate arrangement of elements within the generated diagram. We employed a
five-point scale for both metrics to ensure a nuanced evaluation.

Alignment Annotators assessed alignment by visually comparing the generated diagram image I
to the reference diagram image Ir. The sketch diagram image Is was also provided for evaluation.
Score of 1 and 5 indicated that the diagram’s elements were completely misaligned and almost
perfectly aligned, respectively. To illustrate a score of 1, a randomly selected rendered diagram
image from the training dataset was displayed.

Quality Annotators assessed the quality of the generated diagram images independently of the
reference images, focusing on the structural clarity and arrangement of elements within the layout.
A score of 1 was assigned to diagrams with poorly arranged, overlapping elements that were nearly
unreadable. Conversely, a score of 5 was given to well-structured diagrams with logically arranged
shapes and text that closely resembled human-created diagrams. The scale reflects the overall layout
quality, ranging from incomprehensible to highly coherent visual representations.

Annotation We comprehensively evaluated each model’s outputs across the entire test set using
Amazon Mechanical Turk. A total of 40 annotators conducted the annotation. For each test sample
generated by each model, five annotators performed the evaluation. Diagrams that failed to be
compiled were automatically assigned the minimum score of 1 for alignment and quality metrics.
We computed the final score for each system and instance by averaging the three median evaluation
scores, excluding potential outliers. A detailed description is provided in Appendix H.

6 EXPERIMENTAL SETUP

Models for Comparison We evaluated several state-of-the-art models in our study.7 GPT-4o,
OpenAI’s most efficient multimodal model. We also included GPT-4o mini, their top small model.
From Anthropic, we employed Claude 3.5 Sonnet, the latest in their multimodal LLM series. Lastly,
we assessed LLaVA-Next, a popular open-source model.

Training parameters for IMGTIkZ We set the LoRA tuning parameters for training to r=128 and
α=256. Stage 1 training was conducted with a batch size of 256 for 6,000 steps. Stage 2 training
used a batch size of 128 for 1 epoch. We used 8 A100 GPUs for training IMGTIkZ, and 1 H100
GPU for inference. More details are in Appendix B.

Inference We applied iterative generation as the baseline for the four comparison models (see
Sec.6), while for IMGTIkZ, we implemented both iterative and multi-candidate generation. The
maximum number of attempts M for iterative sampling was set to 5, and the number of candidates
K for multi-candidate generation was set to 20. More details are in Appendix A.

7 RESULTS

7.1 MAIN RESULTS

Can models generate compilable TikZ code for diagrams? Table 3 presents the averaged CSR
results (CSR avg), with IMGTIkZ significantly outperforming the other models. The remaining
models showed relatively low CSR avg values (approximately 0.35-0.54), indicating insufficient
adaptation to TikZ data. Since averaged CSR directly impacts user convenience, achieving higher
scores is crucial. Figure 6 illustrates the progression of cumulative CSR across iterative generation
attempts. IMGTIkZ achieved nearly 100% success after five attempts for the test data, while other
methods leveled off at 0.8-0.9. These results indicate that 10-20% of samples remain uncompilable
even after five attempts with these models.

7We used the gpt-4o-2024-05-13 version for GPT-4o, the gpt-4o-mini-2024-07-18 ver-
sion for GPT-4o mini, the claude-3-5-sonnet-20240620 version for Claude 3.5, and the
llama3-llava-next-8b version, which is trained on the 8B Llama 3 model, for LLaVA-Next.
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Table 3: The results of the automatic (0-1) and subjective (1-5) evaluations. The best results are
highlighted in bold.

Automatic Subjective
Model ImageSim CodeSim CharSim CSR avg Alignment Quality
Closed models
GPT-4o 0.695 0.821 0.611 0.479 3.00 3.20
GPT-4o-mini 0.595 0.814 0.514 0.376 2.39 2.71
Claude 3.5 Sonnet 0.753 0.813 0.671 0.544 3.32 3.54
Open-source models
LLaVA-Next 0.315 0.727 0.206 0.350 1.43 1.93
IMGTIkZ-IG (ours) 0.734 0.815 0.503 0.767 2.78 2.92
IMGTIkZ-MCG (ours) 0.821 0.822 0.594 0.799 3.13 3.30
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Can models generate diagram images close to the reference images? ImageSim and Alignment
in Table 3 present the similarity between generated and reference images. Claude 3.5 performed the
best in Alignment score, followed by IMGTIkZ-MCG. In contrast, for ImageSim, IMGTIkZ-MCG
outperformed the other models, with Claude 3.5 performing the second best. LLaVA-Next, which
has a comparable model size to IMGTIkZ but lacks TikZ-specific training, performed poorly and
rarely generated correct output. IMGTIkZ-MCG performed comparably to GPT-4o in Alignment
despite being smaller, highlighting the effectiveness of our adaptation and multi-candidate genera-
tion strategy. However, even the best-performing model, Claude 3.5, achieved an average Alignment
score of only 3.3, indicating that the generated diagrams match only 50-60% of the reference dia-
grams based on the subjective assessment. These results suggest that the task remains challenging,
even for state-of-the-art models.

Can models generate TikZ code close to the reference code? Table 3 indicates that IMGTIkZ-
MCG achieved the highest similarity scores for code similarity. However, code similarity scores are
generally high with minimal inter-model differences. This indicates that high code similarity does
not necessarily guarantee quality image generation. This discrepancy highlights a critical insight
for model training: generating code that closely resembles the ground truth is insufficient. Similar
to conventional VLMs, IMGTIkZ training relies on loss based on the next-word prediction of code.
However, our findings suggest image similarity metrics need to be incorporated in training or infer-
ence phrases. This result aligns with the significant performance improvements of IMGTIkZ-MCG.

Can models accurately render text in sketch images? The CharSim in Table 3 provides in-
sight into each model’s ability to recognize characters in sketch images and render them accurately
in TikZ diagram. Claude 3.5 achieved the highest CharSim score, followed by GPT-4o. While
IMGTIkZ performed comparably to GPT-4o in Alignment, it significantly underperforms in Char-
Sim. This suggests that IMGTIkZ has enhanced diagram shape recognition but struggles with de-
tailed character recognition. This limitation may reflect the resolution constraints of the SigLIP
vision encoder. However, the substantial improvement in CharSim with multi-candidate generation
indicates character recognition needs to be strengthened during training.

8
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Table 4: Evaluation of the effectiveness of
SKETIkZ as training data.

Model ImageSim CharSim CSR avg

IMGTIkZ-IG 0.734 0.502 0.767
w/ SKETIkZ only 0.513 0.358 0.533

LLaVA-Next 8B 0.315 0.205 0.350

Table 5: Effectiveness of two data augmen-
tation: (a) ImgAugTikZ and (b) AugTikZ.

Model ImageSim CharSim CSR avg

IMGTIkZ-IG 0.734 0.502 0.767

w/o (a) 0.668 0.457 0.635
w/o (a) and (b) 0.601 0.439 0.541

Can models generate high-quality diagrams? Table 3 presents quality scores from subjective
evaluations. Claude 3.5 achieved the highest average score of 3.54 out of 5, followed by IMGTIkZ-
MCG. Even the best-performing Claude model produces approximately 38% of samples with quality
scores below 3 (indicating significant overlap of shapes and text), demonstrating that current VLMs
still struggle with correct diagram layout rendering. This limitation in spatial reasoning is a common
challenge among current VLMs. Our task and dataset can be considered one of the benchmark
datasets for evaluating VLMs’ spatial reasoning capabilities.

How does the number of candidates in multi-candidate generation affect performance? Fig-
ure 7 illustrates the image similarity trends for ImgTikZ-MCG as the number of candidates K in
multi-candidate generation varies. The oracle represents the highest achievable performance by se-
lecting the best candidate on the basis of image similarity to the reference diagram Ir. Results show
performance significantly improved when candidates were increased from one to five. Both ora-
cle and IMGTIkZ demonstrate enhanced image similarity with more candidates. However, when
replacing the selection model from D-SigLIP to CLIP, performance does not increase beyond five
candidates. This indicates the importance of selection model quality in multi-candidate generation.

Do subjective evaluations correlate with automated evaluations? We analyzed correlations be-
tween subjective alignment ratings and automatic evaluation metrics. Pearson’s correlation coeffi-
cients were calculated between human-rated alignment and image similarity (0.759), code similarity
(0.365), and character similarity (0.592). Image similarity correlated strongly with the subjective
evaluation, while code similarity correlated weakly with it. Character similarity correlated moder-
ately, highlighting the importance of textual information in diagram evaluation. Image similarity
metrics often fail to capture this local textual similarity.

Are the subjective evaluations consistent? To assess inter-annotator agreement in subjective
evaluations, we employed Krippendorff’s α (Krippendorff, 1980), a measure commonly used in
related research (Otani et al., 2023; Ku et al., 2023). The analysis showed Krippendorff’s α of 0.761
for alignment and 0.662 for quality, indicating substantial to moderate agreement among annotators
in their subjective assessments.

7.2 DETAILED ANALYSIS

How effective is SKETIkZ alone as training data? We evaluated the effectiveness of our
SKETIkZ dataset, comprising only 2.6k hand-drawn sketch samples, as training data. We evalu-
ated the performance of a model trained solely on SKETIkZ in step 2. Results are presented in
Table 4. While the SKETIkZ-only model underperforms compared to the full-data model, it signifi-
cantly outperforms LLaVA-Next, indicating meaningful adaptation even with this limited dataset.

Is data augmentation effective? To assess the impact of our two data augmentation methods, we
trained models excluding ImgAugTikZ and both ImgAugTikZ and AugTikZ. Results are presented
in Table 5. The observed significant decrease in image similarity, character similarity, and CSR avg
when excluding these datasets demonstrates the effectiveness of both augmentation methods.

To what extent does image augmentation improve sketch recognition? While the ablation
study in Table 5 confirmed image augmentation improved performance, we further investigated its
impact on sketch recognition. Specifically, we compared the performance gap between using ren-
dered reference images Ir and sketch images Is as input. The closer the performance of sketch input
approaches that of rendered image input, the more robust the model’s understanding of sketch noise
can be considered. Results are shown in Table 6. Without ImgAugTikZ, image similarity decreased
by approximately 12.5% and character similarity by 22.7%. In contrast, ImgTikZ limited these re-
ductions to 6.97% for image similarity and 17.0% for character similarity. However, ImgTikZ still
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Table 6: Performance gap between ren-
dered and sketch image inputs: comparison
IMGTIkZ-IG and IMGTIkZ-IG without Im-
gAugTikZ data.

Model

Metric IMGTIkZ-IG w/o ImgAugTikZ

ImageSim
Rendered Image 0.789 0.763
Sketch Image 0.734 0.668

Performance Gap -6.97% -12.5%

CharSim
Rendered Image 0.605 0.591
Sketch Image 0.503 0.457

Performance Gap -16.9% -22.7%

Table 7: Performance gap between ren-
dered and sketch image inputs across differ-
ent sketching tools. Evaluation conducted
using the IMGTIkZ-IG.

Tool

Metric Paper Whiteboard Tablet

ImageSim
Rendered Image 0.793 0.796 0.754
Sketch Image 0.735 0.716 0.740

Performance Gap -7.31% -10.1% -1.90%

CharSim
Rendered Image 0.587 0.627 0.581
Sketch Image 0.502 0.451 0.570

Performance Gap -14.5% -28.1% -1.89%

does not match rendered image input performance, suggesting the potential for further improving
performance by constructing a more noise-robust model construction.

Does image augmentation improve performance for non-sketch images? Comparing Ima-
geSim and CharSim results for Rendered Images in Table 6 reveals that ImgTikZ outperforms the
model without image augmentation. Image augmentation enhanced both ImageSim (0.763→0.789)
and CharSim (0.591→0.605) scores, showing improved recognition even for clean, computer-
rendered images.

Does image recognition difficulty vary across sketch tools? Table 7 presents the performance
gap in image and character similarity when using rendered images versus sketches as inputs across
different sketching tools. Results show that tablet sketches maintain image and character similarity
close to rendered images. However, sketches from paper and whiteboard tools show significant per-
formance degradation, declining by 7-10% in image similarity and 14-28% in character similarity.
This performance drop suggests that paper and whiteboard sketches are more challenging for the
model to process, likely due to their greater noise variety than tablet sketches. Whiteboard sketches
showed the most significantly in performance. While our image augmentation techniques have rela-
tively minimized the gap with rendered image input, further performance improvements will require
developing methods more robust to real-world noise.

8 CONCLUSION

We introduced SKETIkZ, a benchmark dataset with 3,231 pairs of hand-drawn sketches and their
corresponding TikZ codes for generating diagrams. Our experiments demonstrate that current VLMs
face considerable challenges in this task, highlighting the value of SKETIkZ as a benchmark for
future research. We also developed IMGTIkZ, an image-to-TikZ model. Despite being smaller,
this model performed as well as GPT-4o in subjective evaluations. This success came from using
two data augmentation techniques and generating multiple candidates during inference. SKETIkZ is
publicly available, and we expect these data resources and insights to drive the development of more
advanced and efficient methods for automating vector graphics creation from hand-drawn sketches.

9 LIMITATION

Currently, SKETIkZ is restricted to generating diagrams using TikZ. However, the methodology
could be extended to other formats such as SVG, HTML, Python, and JavaScript for diagram gen-
eration from code. Exploring these additional formats could enhance the dataset’s generality and
applicability. Transforming sketches into well-formed diagrams involves information completion,
which can potentially lead to hallucination. An important direction for future work is developing
an interactive system that allows users to modify generated diagrams through instructions. Further-
more, while our multi-candidate generation strategy considers code correctness and image quality
metrics after code generation, incorporating these metrics directly into the training phase could po-
tentially lead to better generation results, representing a promising direction for future work.

10
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ETHICS STATEMENT

Were annotators for sketch creation told what the dataset would be used for, and did they
consent? Yes. BAOBAB Inc. was fully responsible for managing the annotators. BAOBAB Inc.
provides task descriptions, training, and agreements for each project with the annotators https:
//baobab-trees.com/en/service.

Data License SKETIkZ is derived from a publicly available subset of DaTikZ (Belouadi et al.,
2023), which permits copying and redistributing content under a Creative Commons Attribution
License,8 the GNU Free Documentation License,9 or the MIT License.10

Potential ethical considerations We believe that there are minimal ethical considerations within
the scope of this current research. However, as more accurate automatic diagram generation be-
comes feasible in the future, several issues may arise. These potential problems include the misuse
of highly accurate auto-generated diagrams to spread misinformation, the risk of AI models per-
petuating or amplifying biases from their training data, and the possibility of advanced systems
inadvertently reproducing copyrighted diagram designs, thereby raising intellectual property and
copyright infringement issues; all of these challenges necessitate the establishment of appropriate
guidelines to address them effectively.

REPRODUCIBILITY STATEMENT

Dataset Distribution SKETIkZ is available at https://sketikz.github.io/

Details of models, hyperparameters, and manual evaluation Appendices B, C, and E provide
detailed information about the models developed in this study. Appendix A describes the specifics
of our inference process. Appendix H presents details regarding the subjective evaluation. Addi-
tionally, Appendices D and G presents details of the data creation process.
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A DETAILS OF INFERENCE

Inference Procedure We used pdflatex from TeX Live 202311 to compile generated TikZ code
into a diagram image. We first cropped the rendered image using pdfcrop and then converted it to a
PNG file to calculate image similarity.

Hyperparameters for closed models We used the API’s default parameters for the closed models
GPT-4o, GPT-4o mini, and Claude. The max token parameter was set to 2,048 for all models.

Hyperparameters for LLaVA1.6 and IMGTIkZ We set the maximum number of newly gener-
ated tokens to 2,048 and generated the code through sampling. The sampling temperature was set to
0.6, a value determined through evaluation using the validation set.

B HYPERPARAMETERS FOR TRAINING IMGTIkZ

We conducted the training using the official code of LLaVA.14 Table 8 details the hyperparameters
used for stage 2 training of IMGTIkZ. For stage 2 training, we used a total batch size of 128. The
stage 1 training employed similar hyperparameters, with a few exceptions: we set the batch size to 32
with gradient accumulation over 4 steps, resulting in a total batch size of 128, and we increased the
max length to 2048. These parameters were derived from the original implementation of LLaVA1.5.
The training process consisted of 6000 steps for stage 1 and a full epoch for stage 2. We conducted
the training using 8 A100 GPUs. The total training time was approximately 24 hours for stage 1 and
60 hours for stage 2.

11https://tug.org/texlive/
14https://github.com/haotian-liu/LLaVA
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Table 8: Configuration for the IMGTIkZ model training.

Option Value

model name (LLM) deepseek-ai/deepseek-coder-6.7b-instruct12

model name (Vision encoder) google/siglip-so400m-patch14-38413

lora r 128
lora alpha 256
mm projector lr 2e-5
mm projector type mlp2x gelu
group by modality length True
bf16 True
num train epochs 1
batch size 16
gradient accumulation steps 8
weight decay 0
warmup ratio 0.03
lr scheduler type cosine
model max length 4096
gradient checkpointing True

C D-SIGLIP: AN SIGLIP MODEL ADAPTED FOR DIAGRAM

We trained D-SigLIP using a contrastive learning framework based on Hugging Face’s code.15 We
used the google/siglip-so400m-patch14-384 version of SigLIP as the vision encoder.
During training, we applied augmentation twice to each image, aiming to maximize the similarity
between augmented versions of the same image within the batch. Image augmentation was per-
formed on-the-fly using imgaug.16 The noise pipeline applied through imgaug is detailed below.

Listing 1: Image Augmentation Pipeline for D-SigLIP Training
pipeline = iaa.Sequential([

iaa.Affine(scale={"x": (0.7, 1.0), "y": (0.7, 1.0)}, cval=255),
iaa.Affine(rotate=(-5, 5), cval=255),
iaa.Affine(translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)},

cval=255),
iaa.Sometimes(0.2, iaa.ChangeColorTemperature((1100, 3000))),
iaa.Sometimes(0.3, iaa.AdditiveGaussianNoise(scale=(10, 20))),
iaa.Sometimes(0.3, iaa.MultiplyAndAddToBrightness(mul=(0.8, 1.2), add

=(-5, 5))),
iaa.Sometimes(0.3, iaa.GammaContrast((0.8, 1.2))),
iaa.Sometimes(0.3,

iaa.BlendAlphaSimplexNoise(
iaa.Multiply((1.5, 2.5), per_channel=True),
upscale_method=’cubic’,
iterations=(1, 2)

)),
iaa.Sometimes(0.1, iaa.LinearContrast((0.8, 1.2))),
iaa.ElasticTransformation(alpha=(15.0, 40.0), sigma=(5.0, 10.0)),

])

The training was conducted using four H100 80G GPUs. We set the batch size to 1024, the learning
rate to 5e-5, and the warmup steps to 0, with training carried out for 200 steps.

D DATASET COLLECTION PROCESS

First, we compiled the TikZ code from DaTikZ (Belouadi et al., 2023) to render the diagram images.
Then, we developed a diagram classification model (See Section E) using the ACL-fig (Karishma

15https://github.com/huggingface/transformers/tree/main/examples/
pytorch/contrastive-image-text

16https://imgaug.readthedocs.io/en/latest/
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et al., 2023) data, which was subsequently employed to classify the rendered diagrams from the
DaTikZ dataset. We then extracted diagrams with the predicted labels Tree, Graph, Architecture
diagram, Neural networks, and Venn diagram and sampled 4,000 instances from them.
BAOBAB Inc. coordinated multiple annotators to create the corresponding sketches for sampled
instances. We excluded diagrams that were too complex to be sketched, diagrams of bar charts and
line graphs that require numerical data, overly simplistic diagrams comprising only straight lines or
dots, diagrams with illegible text, diagrams containing non-English text, and incomplete diagrams
that were unnaturally truncated from the tasks during this process. The annotators selected one
of the following tools to create the sketches: paper, whiteboard, or tablet. When using paper or
whiteboard, they captured photos of the hand-drawn images with a smartphone camera. They used
the drawing tool’s save function for tablets to save the images. All images were then converted to
PNG format. As a result of these processes, we ultimately created 3,231 instances.

E DIAGRAM IMAGE CLASSIFICATION MODEL FOR DATA CONSTRUCTION

We developed a model to classify diagram images into categories by fine-tuning a pre-trained
vision transformer on the ACL-fig dataset.17 For the pre-trained VIT, we used Google’s
vit-large-patch16-224-in21k.18 The training was conducted using Hugging Face’s
tools.19 The parameters used for the training are listed in Table 9. We trained the model using
a NVIDIA A100 GPU. The model achieved a classification accuracy of 0.886 on the evaluation
dataset.

Table 9: Configuration for the image classification model.

Option Value
model name google/vit-large-patch16-224-in21k
learning rate 2e-5
num train epochs 5
batch size 8
warmup ratio 0
weight decay 0

Table 10 presents the breakdown of estimated image labels within the sampled data. Furthermore,
Figure 8 illustrates example diagrams for each estimated label category. While these are estimated
labels and may potentially include diagrams that do not strictly conform to any specific category or
contain estimation errors, we confirmed that there are diverse types of diagrams in our dataset.

F SKETCH IMAGE EXAMPLES

Figure 9 shows a subset of the collected sketch images.

G DETAILS OF THE DATA AUGMENTATION

G.1 AUGTIkZ: THE AUGMENTATION FOR INCREASING DIAGRAM VARIATION

From the arXiv source files,20 we initially obtained 916,123 TikZ code samples. However, only
155K of these were successfully compiled. We utilized these compilable codes as RenderTikZ.
While the remaining codes failed to compile, we recognized their potential to significantly increase
diagram variations if effectively utilized. To achieve this, we employed two types of augmentation
prompts. The first prompt focused on code revision and was applied to the initially failed compila-
tions. The second prompt, aimed at code modification, was applied to the entire dataset. The specific
instructions provided were as follows. We used the gpt-3.5-turbo-0125 version of GPT-3.5
to create the augmentation data.

17https://huggingface.co/datasets/citeseerx/ACL-fig
18https://huggingface.co/google/vit-large-patch16-224-in21k
19https://github.com/huggingface/transformers/blob/main/examples/

pytorch/image-classification/run_image_classification.py
20https://info.arxiv.org/help/bulk_data_s3.html
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Table 10: Proportion of estimated image labels in the sampled data.

Category Number Proportion
Tree 1,799 45.0 %
Graph 1,046 26.2 %
Architecture diagram 646 16.2 %
Neural networks 459 11.5 %
Venn diagram 50 1.1 %

All 4,000 100%

Figure 8: Examples of estimated image labels and their diagrams.

Prompts for data augmentation

• Please modify the given LaTeX source code to make it compilable, including only
the required preamble statements. If any external files are referenced, please modify
the code to avoid referencing external files and include the content directly. The
output should consist solely of the code itself, without any supplementary text.

• Please generate TikZ source code that modifies parts of the following code to create
a different diagram. Ensure the code is compilable and includes only the required
preamble statements. If any external files are referenced, please modify the code to
avoid referencing external files and include the content directly. The output should
consist solely of the code itself, without any supplementary text.

We included only the code that successfully compiled and rendered images correctly in our dataset
AugTikZ. Furthermore, we excluded images that were rendered at extreme scales (either too large
or too small) from the training dataset.

G.2 IMGAUGTIkZ: THE AUGMENTATION FOR INCREASING IMAGE VARIATION

To simulate the noise typically present in sketches, we applied several augmentation techniques to
both RenderTikZ and AugTikZ. These included compositing with notebook background images,
augmentation using imgaug, and white balance augmentation.21 For notebook backgrounds, we
created eight unique images independently of the sketch annotation process. The imgaug library

21https://github.com/mahmoudnafifi/WB_color_augmenter
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Figure 9: Examples of collected sketch images.
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was used to generate variations in rotation, distortion, Gaussian noise, brightness, and contrast. The
specific augmentation pipeline created with imgaug is detailed below.

Listing 2: Image Augmentation Pipeline for Image Augmentation
pipeline = iaa.Sequential([

iaa.Pad(percent=0.3, pad_mode="median"),
iaa.Sometimes(0.3, iaa.AdditiveGaussianNoise(scale=(10, 20))),
iaa.Sometimes(0.3, iaa.MultiplyAndAddToBrightness(mul=(0.8, 1.2), add

=(-5, 5))),
iaa.Sometimes(0.3, iaa.GammaContrast((0.8, 1.2))),
iaa.Sometimes(0.3,

iaa.BlendAlphaSimplexNoise(
iaa.Multiply((1.5, 2.5), per_channel=True),
upscale_method=’cubic’,
iterations=(1, 2)

)),
iaa.Sometimes(0.1, iaa.LinearContrast((0.8, 1.2))),
iaa.Affine(rotate=(-5, 5)),
iaa.ElasticTransformation(alpha=(15.0, 30.0), sigma=(5.0, 10.0)),
iaa.CropToFixedSize(width=int(width*0.8), height=int(height*0.8))

])

H SUBJECTIVE EVALUATION

For each test sample, annotators evaluated the alignment and quality of the six systems’ outputs,
GPT-4o, GPT-4o mini, Claude 3.5 Sonnet, LLaVA-Next, IMGTIkZ-IG, IMGTIkZ-MCG. We com-
pensated annotators at a rate of $1.5 per test sample.
We provided annotators with the following instructions for conducting their evaluations:

Instructions

For each image A-F, please assign a score from 1 to 5 based on the following two aspects.
You may also use 0.5 increments, such as 1.5 or 3.5.

• Alignment: The extent to which the generated diagram image matches the layout and
content of the hand-drawn image.

• Quality: The overall completeness of the generated diagram image, regardless of the
presence or absence of the hand-drawn and reference image.

The specific evaluation criteria for alignment that we instructed the annotators to follow are as fol-
lows:

Evaluation Criteria for Alignment

1: The elements of the diagram in the generated image and the hand-drawn image do
not match at all.

2: The elements of the diagram in the generated image and the hand-drawn image
match approximately 25%.

3: The elements of the diagram in the generated image and the hand-drawn image
match approximately 50%.

4: The elements of the diagram in the generated image and the hand-drawn image
match approximately 75%.

5: The elements of the diagram in the generated image and the hand-drawn image
match almost perfectly.

The specific evaluation criteria for quality that we instructed the annotators to follow are as follows:
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Evaluation Criteria for Quality

1: Almost complete overlap of text or shapes, making the diagram unreadable.
2: Significant overlap of text or shapes, and the arrangement of elements is unnatural.
3: Significant overlap of text or shapes, making some elements unreadable, or some

elements are arranged unnaturally.
4: Some overlap of text or shapes, but the arrangement of elements is neat.
5: No overlap of text or shapes, and the arrangement of elements is as neat as a human-

created diagram.

Figure 10 presents a partial screenshot of the annotation system interface. The complete template
file for the annotation system, which includes all instructions, can be accessed this link https:
//storage.googleapis.com/sketikz/template_202409_example.html.

Figure 10: Screenshot of the annotation interface: In the HTML, each image can be clicked to
enlarge, allowing annotators to view the details of the diagrams.

I GENERATED DIAGRAM EXAMPLES WITH EVALUATION SCORES

Tables 11 and 12 show some examples of generated diagrams. IMGTIkZ-MCG generally selects
better candidates compared to IMGTIkZ-IG.

J DETAILED EXPLANATION OF COMPILATION SUCCESS RATE (CSR)

To better illustrate the difference between CSRavg and CSRcum, we provide examples below.
CSRavg represents the success rate across all generation attempts. For example, if a model attempts
N generations for each of the 100 test samples and succeeds in compilation K times, then

CSRavg =
Nsuccess

Ngen
=

K

(100×N)
. (1)
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Table 11: Examples of generated diagrams and their metric scores.⊠ indicates a compile error and,
therefore, has no score.

(a) sketch diagram reference diagram

Models GPT-4o GPT-4o mini Claude 3.5 LLaVA IMGTIkZ-
IG

IMGTIkZ-
MCG

Diagram

Alignment 3.67 2.83 3.83 1.67 4.00 4.67
Quality 3.67 2.67 4.17 2.17 3.67 5.00
ImageSim 0.86 0.69 0.82 0.38 0.81 0.91

(b) sketch diagram reference diagram

Models GPT-4o GPT-4o mini Claude 3.5 LLaVA IMGTIkZ-
IG

IMGTIkZ-
MCG

Diagram ⊠

Alignment 3.83 N/A 4.50 1.00 4.17 4.67
Quality 4.00 N/A 4.83 1.00 4.83 4.83
ImageSim 0.79 N/A 0.92 0.05 0.87 0.92

To illustrate, if we make 10 generation attempts for each of the 100 test samples (totaling 1,000
generations) and achieve successful compilation in 400 cases, then

CSRavg =
400

1000
= 0.4. (2)

CSRcum, which is exclusively used for iterative generation, measures the cumulative proportion of
test samples achieving successful compilation across multiple attempts. Consider the following
sequential process for 100 test samples:

• First generation: 50 of the 100 samples compile successfully

• Second generation: 20 of the remaining 50 (100 - 50) samples compile successfully

• Third generation: 10 of the remaining 30 (50 - 20) samples compile successfully
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Table 12: Examples of generated diagrams and their metric scores.⊠ indicates a compile error and,
therefore, has no score.

(c) sketch diagram reference diagram

Models GPT-4o GPT-4o mini Claude 3.5 LLaVA IMGTIkZ-
IG

IMGTIkZ-
MCG

Diagram

Alignment 3.83 3.17 4.67 2.33 3.00 3.83
Quality 4.17 3.50 4.83 3.83 3.33 4.17
ImageSim 0.70 0.76 0.88 0.27 0.77 0.81

(d) sketch diagram reference diagram

Models GPT-4o GPT-4o mini Claude 3.5 LLaVA IMGTIkZ-
IG

IMGTIkZ-
MCG

Diagram ⊠ ⊠ ⊠ ⊠

Alignment N/A N/A N/A N/A 2.83 4.33
Quality N/A N/A N/A N/A 4.33 3.50
ImageSim N/A N/A N/A N/A 0.75 0.86

In this scenario,

CSRcum =
Ntest success

Ntest
=

50 + 20 + 10

100
= 0.8. (3)

This metric specifically quantifies the proportion of test samples that eventually achieve successful
compilation, independent of the total generation attempts.
The motivation for utilizing these two distinct evaluation metrics arises from their complementary
analytical perspectives: CSRavg represents the average compilation success rate, enabling fair model
comparison. CSRcum measures the proportion of successfully compiled test samples across multiple
attempts, analogous to a recall metric.
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Table 13: Comparison of IG and Step-by-step + IG approaches.

Model IG Two-stage + IG

GPT-4o 0.695 0.730
Claude 3.5 Sonnet 0.753 0.733

K EVALUATION OF THE EFFECTIVENESS OF A STEP-BY-STEP APPROACH:
TEXT GENERATION FOLLOWED BY CODE GENERATION

Although this paper does not focus on this approach, we also investigate a step-by-step method for
solving this task, where a textual description of the sketch image is first generated, followed by code
generation. To assess the effectiveness of this approach, we conducted experiments using Claude
3.5 Sonnet and GPT-4o. The results are presented in Table 13. The evaluation was performed using
ImageSim for automated evaluation. The results indicate that while Claude 3.5 did not improve
performance, GPT-4o slightly increased performance. This suggests that text-mediated generation
is beneficial for models with relatively lower code generation capabilities but has limited impact on
models with stronger code generation abilities. One possible reason is that errors may occur during
text generation, meaning that textual descriptions do not always positively contribute to subsequent
code generation. Investigating more effective step-by-step methods for models with sufficiently high
code generation capabilities remains an important direction for future research.
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