
(counterfactual)

PlaSma

PLASMA

: Making Small Language Models
Better Procedural Knowledge Models for

(Counterfactual) Planning

Faeze Brahman 12 Chandra Bhagavatula 1 Valentina Pyatkin 1† Jena D. Hwang 1†

Xiang Lorraine Li 15 Hirona J. Arai 3 Soumya Sanyal 3

Keisuke Sakaguchi 4 Xiang Ren 13 Yejin Choi 12

1Allen Institute for Artificial Intelligence 2University of Washington
3University of Southern California 4Tohoku University 5University of Pittsburg

faezeb@allenai.org

Abstract

Procedural planning, which entails decomposing a high-level goal into a sequence
of temporally ordered steps, is an important yet intricate task for machines. It
involves integrating common-sense knowledge to reason about complex contextual-
ized situations that are often counterfactual, e.g. “scheduling a doctor’s appointment
without a phone”. While current approaches show encouraging results using large
language models (LLMs), they are hindered by drawbacks such as costly API calls
and reproducibility issues. In this paper, we advocate planning using smaller lan-
guage models. We present PLASMA, a novel two-pronged approach to endow small
language models with procedural knowledge and (counterfactual) planning capa-
bilities. More concretely, we develop symbolic procedural knowledge distillation
to enhance the implicit knowledge in small language models and an inference-time
algorithm to facilitate more structured and accurate reasoning. In addition, we
introduce a novel task, Counterfactual Planning, that requires a revision of a plan
to cope with a counterfactual situation. In both the original and counterfactual
setting, we show that orders-of-magnitude smaller models (770M-11B parameters)
can compete and often surpass their larger teacher models’ capabilities.1

1 Introduction

Powered by massive scale, large language models (LLMs) excel on many downstream tasks that
require commonsense. One such task is procedural planning [27], a task that involves decomposing
a high-level goal into a sequence of coherent, logical, and goal-oriented steps (plan) (e.g. “see a
movie" → “Look up movie showings", “Choose a movie" . . .). Recent approaches model this task as
a conditional text generation problem using LLMs [23, 11, 1]. Despite their reasonable performance
on the task, their steep computational cost and inaccessibility hinder wider adoption of LLMs [24].

We present PLASMA (PLAn with SMAll models), a novel two-pronged framework to impart planning
abilities in small LMs. We achieve this through symbolic procedural knowledge distillation to enhance
the implicit knowledge in small LMs (Figure 1) and an inference-time decoding algorithm to enable
structured reasoning (Figure 2). We formulate symbolic procedural knowledge distillation [41, 3] in
two stages: (i) Knowledge verbalization to generate procedural knowledge from an LLM, and (ii)
Knowledge distillation to transfer LLM-generated knowledge to a smaller LM.

†Authors contributed equally.
1We make our dataset and code publicly available at: https://github.com/allenai/PlaSma

Preprint. Under review.

ar
X

iv
:2

30
5.

19
47

2v
2

 [
cs

.C
L

]
 2

6
Ju

l 2
02

3

https://github.com/allenai/PlaSma

goal + plan + condition

Prompt
Templates: Distilled

PLASMA

Procedural Knowledge Verbalization

Supervised
Critic

goal
goal + plan

COPLAN Dataset

Goals Plans Conditions Counterfactual
Plans

Provide steps:
 [goal] see a movie

Provide steps conditionally:
 [goal] see a movie
 [condition] see the movie at home

Planning (P)

Counterfactual Planning (CP)

Counterfactual Plan Revision (CPR)

PLAN:
1.Look up movie showings and times
2.Choose a movie to see
3.Drive to the movie theater
4.Get items from the concession stand
5.Walk together towards the theater
6.Sit down in the assigned seats
7.See a movie.

1.Choose a streaming service
2.Choose the movie and start streaming it
3.Get snacks or drinks from the kitchen
4.Set up the viewing device

in a comfortable and safe place
5.Sit and enjoy the movie.

COUNTERFACTUAL PLAN:

Multitasking

P CP CPR

Procedural Knowledge Distillation

N/A

Rewrite steps:
 [goal] see a movie
 [plan] 1. Look up movie showings and
 times; 2. Choose a movie to see;
 … 7. See a movie
 [condition] see the movie at home

LLM

Figure 1: Symbolic Procedural Knowledge Distillation.

In addition to the standard planning task, we introduce and verbalize knowledge for novel task
formulations under counterfactual settings: Counterfactual planning and Revision. These tasks
enable a more realistic setting by requiring models to reason about contextually constrained situations
in real-world applications; specifically, the model generates or revises a plan based on a given goal
(e.g., "see a movie") while adhering to an additional condition (e.g., "at home"). Our knowledge
verbalization process results in a large (counterfactual) procedural planning dataset, COPLAN, which
is then used to train smaller models, PLASMA, using both task-specific and multi-task distillation.

We observe that the standard next-token prediction objective in auto-regressive LMs (applied during
distillation) does not equip them with sufficient causal and temporal reasoning abilities to generate
high-quality plans, or a mechanism to rectify their mistakes in earlier steps. To address this challenge,
we develop a verifier-guided step-wise beam search to better leverage the multi-step structure of plans
(resulting in PLASMA+). Concretely, we incorporate a step-wise verifier in our decoding process to
guide PLASMA+ to generate more semantically coherent and temporally accurate plans.

Through experiments, we show that our approach is effective at endowing smaller LMs with planning
abilities. For the standard planning task, smaller student models (of varying sizes) achieve 17.57%
relative improvements, on average, over their teacher. The best student model is comparable even to
GPT-3, a model 16 times the student’s size. Furthermore, we, for the first time, distill counterfactual
planning abilities in small-size models, achieving 93% validity rate according to human evaluation.
In a simulated environment [29], our model significantly outperforms previous work based on
GPT-3 [11] on executability (by 17%) and correctness (by 25%). Taken together, our framework
including symbolic procedural distillation, decoding-time algorithm, and the proposed tasks and the
accompanying COPLAN dataset provide valuable resource and direction for advancing research in
the field of procedural planning.

2 Small Language Models as Procedural Knowledge Models

In this section, we discuss how to endow small students with procedural knowledge and (counterfac-
tual) planning capabilities. We first describe our knowledge verbalization and distillation framework
which we collectively refer to as Symbolic Procedural Knowledge Distillation (§2.1, §2.2). We then
propose a strategy to enhance the reasoning capabilities of small students via a novel verifier-guided
step-wise decoding algorithm (§2.3).

2.1 COPLAN: Procedural Knowledge Verbalization from Large Teachers

Large language model can perform new tasks by adapting to a few in-context examples [4]. We thus
leverage this emergent reasoning capabilities of LLM to circumvent the challenge of crowdsourcing
supervised datasets at scale. We collect data targeting the following three tasks:

1. Goal-based Planning (pl.), decomposing a high-level goal g into a sequence of temporally
extended steps y = {st}Tt=1.

2

2. Counterfactual Planning (cp.), decomposing a high-level goal g into a sequence of temporally
extended steps y = {st}Tt=1 while satisfying a given condition c.

3. Counterfactual Plan Revision (cpr.), rewriting an initial plan y to a given goal g into a new
plan y′ in order to satisfy a given condition c.

Our knowledge verbalization pipeline shown in the left side of Figure 1 is a two-stage process: 1)
instance generation through few-shot prompting, and 2) automatic data curation using a critic to filter
out the low quality data. The process results in COPLAN, a quality dataset containing goals, plans,
conditions, and counterfactual plans.

Step 1. Data Generation We start by generating a large pool of goals G with a diverse range of
topics in a bootstrapping fashion. We initiate the seed goal pool with 100 goals generated by GPT-3
(text-curie-001) along with 5 example goals provided by the authors. With the seed goal pool,
we iteratively expand it by GPT-3 with randomly selecting example goals for prompting.

For each generated goal g ∈ G, we few-shot prompt a teacher model M to generate a set of ordered
steps, as a plan y to achieve the goal. The input to M, including instruction and few-shot examples,
takes the format shown in Figure 7. Since LLMs can be sensitive to instruction, and/or few-shot
examples [28, 21], we randomize the prompt by (i) manually creating a set of semantically similar
instructions and each time randomly sample from the instruction set (ii) creating dynamic in-context
examples for each input. We use a subset of the existing ProScript [34] and DeScript [39] datasets
as our seed source to form in-context examples, P = {(gj , yj)}Mj=1:

yi ∼ M(yi|gi,P)

The result is a pool of 140k pairs of goal and plans, (g, y), generated from the teacher model.

For the counterfactual setting, we also obtain conditions c, and modified plans y′ from a teacher model
M through few-shot prompting. We manually design our prompts P to collect natural language
conditions concerning the environment the task is performed in such as Location (“the store is
closed”), Equipment (“you don’t have a sharp tool”), Safety (“the car breaks down”) or user’s
specifications such as Physical Condition and Preference (“you have an injury“). For a given
goal gi and plan yi, we sample conditions:

ci ∼ M(ci|gi, yi,P)

Next, we few-shot prompt M to rewrite an initial plan y for a given goal g such that it satisfies the
requirement of a condition c:

y′i ∼ M(y′i|gi, yi, ci,P)

The prompting templates and examples of conditions are shown in Figure 8 and Table 6.

Step 2. Automatic Data Curation To retain high-quality data for planning under the original and
counterfactual settings, we filter out generated samples from Step 1, i.e. generated plans, conditions
and counterfactuals, that are invalid or of low quality. A plan y is considered invalid if it contains an
illogical order of steps, is off-topic (w.r.t the goal) or incomplete. Whereas a counterfactual plan y′

should not only satisfies these general criteria but should also adhere to the condition.

To this end, we train separate supervised critic models to judge the quality of generated samples of
different types. We collect human annotations of valid vs. invalid samples on Amazon Mechanical
Turk to train a RoBERTa-Large [17] as our critic models. All critics are binary classifiers which
identify whether a tuple of either (goal, plan), (goal, plan, condition) or (goal, plan, condition,
modified plan) is valid. We provide more details on annotation instructions, and hyper-parameter
tuning in Appendix B.1 and B.2.

Naturally, there is a trade-off between dataset size and precision. Following West et al. [41], we test
several confidence thresholds at which the critic rejects a pair and choose the best values (0.65, 0.76,
0.82)2 according to precision-recall curves. After filtering out low quality data, our final COPLAN
dataset consists of 2 main subsets including 57,794 (goal, plan) for the original goal-based planning
task (Dpl.), and 43,690 (goal, plan, condition, modified plan) for the counterfactual settings, (Dcp.

and Dcpr.). On the original planning task, COPLAN is ×11 larger in scale than existing datasets
[34, 39] while keeping the precision at 74%. On the proposed counterfactual settings, our dataset is to

2These values are for plan, condition and counterfactual plans, respectively.

3

Buy a new car

Plan-so-far:

Step-wise
Verifier

Distilled
PLASMA+

1. Research vehicle and features
2. [next step]

… …
…

Test drive a car

Research vehicle

Go to dealership

Make the purchase

Check sales price

…

Contact seller

Fill out registration

…

Write a check

Negotiate a best price

Get the keys

.35

.68

.84

.69

.19

.76

.24

.73

.41

… …

.72

.54

.70

.81

.56

.91

.48

.18

…

.52

.76

.11

…

Does [next step] logically follows the
[plan-so-far] to help achieve the goal?

Temporality,
Logicality,

Based on: Completeness,
Achievability

Figure 2: Verifier-guided Step-wise Beam Search. For brevity, we only showcase with N = 5 and
K = 2 for the first step and N = 4 and K = 2 for the second step. The scores are for illustration
purposes only.

the best of our knowledge the first large-scale counterfactual procedural planning dataset. Analyses
show that the COPLAN includes a diverse array of topics covered by goals (§A.1) and conditions
(§A.2).

2.2 PLASMA: Procedural Knowledge Distillation into Small Students

After obtaining our procedural planning data COPLAN, we use it to fine-tune student models on the
three different tasks. We consider both task-specific and multi-task distillation objectives to transfer
generated procedural knowledge into the student models:

Task-specific Distillation. Following the common practice, we use the standard autoregressive
language modeling objective [32] to fine-tune separate student models for each task:

L(θ) = E(x,y)∼Dtask

[
− log pθ(y|T (x))

]
, for task∈{pl.,cp.,cpr.} (1)

where T (x) is a task-specific template for each task-specific input x (see right side of Figure 1).

Multi-task Distillation. We also aim to improve the generalization of the student model by
exploiting the knowledge contained in the three related tasks as an inductive bias [33, 40]. We thus
minimize the joint loss:

L(θ) = E(g,y)∼Dpl.

[
− log pθ(y|T (g))

]
(2)

+ E(g,c,y)∼Dcp.

[
− log pθ(y|T (g, c))

]
+E(g,c,y,y′)∼Dcpr.

[
− log pθ(y

′|T (g, c, y))
]

We name this student PLASMA-Mul.

2.3 PLASMA+: Advancing Student with Verifier-guided Decoding

During inference, the student may generate logically and/or temporally ill-formed sequence of steps
y = {st}Tt=1 as it is only trained to maximize the next-token probability. For example, in Figure 2, it
may generate “write a check” at step 3 with relatively high confidence due to a spurious correlation
between “sales price” and “check”. We mitigate this issue via step-wise guided decoding. Rather
than generating plans greedily, we instead generate step-by-step by sampling several candidate next
steps and searching for those with a high log-probability under both the distilled student and a verifier.
The verifier is tasked to check for sequential ordering and semantic completeness. In an embodied
setting, the verifier could be taken over by any affordance or safety module [1] that determines the
executability of an action in a given environment.

Step Verifier. We introduce an independent verifier, which is trained to check the validity of plan
steps and encourage PLASMA to produce more temporally and causally valid plans. The verifier takes
as input a goal, the plan-so-far and a candidate next step and outputs a continuous validity score
pverifier(st|g, s<t) ∈ [0, 1].

We implement the verifier by fine-tuning a RoBERTa model [18] to classify whether a candidate step
is valid or invalid. For training data, we use steps from available human-written plans3 as positive

3Note that only a small-scale set of ground-truth plans is needed to train a verifier.

4

examples (valid steps). However, since no negative examples are readily available, we automatically
create a set of invalid steps as pseudo-negative examples. Inspired by the common errors made
by models, we design perturbations over ground-truth plans to target sequential ordering, semantic
completeness, topicality, and fluency. See Appendix B.3 for details.

Verifier-guided Step-wise Beam Search. We illustrate our verifier-guided decoding in Figure 2.
The procedure generates a plan y = (s1, ..., sT) by sequentially sampling and pruning the next step
candidate st. Concretely, at each iteration4, it selects and expands a size-K beam of plan-so-far,
Yt−1 = {sk<t}Kk=1, and generates N next-step candidates,

Yt = ∪s<t∈Yt−1
{(s<t||snt) | snt ∼ q(.|T (x, s<t)}Nn=1 (3)

where || is concatenation, x is a task-specific input, and q is a decoding algorithm. We encourage
exploration at each step, by generating candidates using multiple decoding methods such as beam
search, and nucleus sampling with temperature 1.0.

To select the top-K scoring next-step candidates S∗
t , we use a value function v(s≤t) −→ R which

returns the weighted sum of normalized sequence log-likelihood from the student model and the
verifier validity score,

S∗
t = arg top-Ks≤t∈Yt

v(s≤t) (4)

v(s≤t) = α log pθ(s≤t) + (1− α) log pverifier(st|g, s<t) (5)

with α controlling the impact of the distilled student and the verifier. The search ends when the beam
contains K completed plans. We return the highest-scored plan as the final output. Our step-wise
beam search strategy maintains a diverse set of candidate plans during the decoding process, allowing
the model to explore multiple plausible paths before converging on a most promising one.

3 Experiments

Implementation Details. While any model with few-shot capabilities could be used, we choose
our teacher model M to be GPT-3 text-curie-001 [4] for collecting the goals and initial plans,
and GPT-3 text-davinci-003 for collecting conditions and counterfactual plans.5 We sample data
points from GPT-3 using nucleus sampling (p = 0.98) and temperature of T = 0.9. For our student
models, we try a range of model sizes in T5 family [33], such as T5-large, T5-3B, and T5-11B.
Student models are trained using Huggingface Transformers [42]. Main experiments can be done on
2 GPUs with 48GB of memory.

During inference, we use a beam of size K = 5 for regular beam search, and N = 10 (next-step
candidates), beam K = 5 and p = 0.9 for our verifier-guided step-wise decoding (see §2.3).

Baselines. For each task, we compare our distilled students with their corresponding teacher,
zero-shot and few-shot variants of GPT-3 [4], COCOGEN [23] and human performance (when
available). COCOGEN frames the planning task as a code generation task and use a pre-trained code
LM (code-davinci-002) in a few-shot setting.

Next, we present the experimental setup for each task, along with their results.

3.1 Goal-based Planning

In this section, we aim to study two key research questions through our experiments. Firstly, we seek
to investigate the extent to which scale impacts the distillation of procedural knowledge. Secondly,
we aim to examine whether the scale gap can be bridged through the use of multitasking and/or a
novel decoding algorithm. In essence, we seek to determine whether small language models can
perform procedural planning tasks with the same level of proficiency as large language models.

Evaluation Set. For the original planning task, we use human-written plans from the test set of
ProScript [34] dataset as our evaluation data.

4Iteration refers to a full step in a plan.
5In our preliminary experiment, we found text-davinci-003 (the strongest GPT-3 version at the time) to

be helpful for the more challenging counterfactual data collection.

5

Setup. We compare several student models of varying scales (770M-11B) with the teacher model,
text-curie-001, and extremely large scale models (175B). For all student models, we decode
using both regular beam search (PLASMA) and our verifier-guided step-wise beam search (PLASMA+).

770M 3B 11B 175B

250 samples

Figure 3: Visualization of bridging the scale gap in
goal-based planning task. Smaller models are able
to achieve comparable performance and sometimes
surpass larger models via multi-task distillation
and step-wise guided decoding.

Metrics. Since there may exist many equally
valid plans to a goal, we conduct human evalu-
ations for the main results and report automatic
metrics such as BLEU [25], ROUGE [16] and
BERTScore [47] in Appendix Table 7.

We ask human annotators on the Amazon Me-
chanical Turk (AMT) platform to rate the gen-
erated plans for 250 randomly sampled goals
on three aspects: 1) Order: how well-ordered
the plan is (captures sequential correctness), 2)
Completeness: how well the plan covers the
necessary steps to accomplish the goal (cap-
tures semantic completeness), and 3) Overall
quality: overall quality and correctness of the
plan. Details of the human evaluation can be
found in Appendix D.2 Figure 9.

Table 1 and Figure 3 summarize the human eval-
uation results for the original planning task.

Does scale matter? Larger models perform relatively better across all aspects.

Modelsize Coverage Order
Overall
Quality

Distilled 770M

PLASMA 3.18 3.64 3.17

PLASMA+ 4.25 4.55 4.28

PLASMA-Mul 2.84 3.36 2.85

PLASMA-Mul+ 4.16 4.48 4.23

Distilled 3B

PLASMA 3.78 4.07 3.83

PLASMA+ 4.38 4.60 4.35

PLASMA-Mul 3.96 4.35 4.03

PLASMA-Mul+ 4.29 4.62 4.33

Distilled 11B

PLASMA 4.01 4.33 4.03

PLASMA+ 4.33 4.60 4.39

PLASMA-Mul 4.24 4.59 4.28

PLASMA-Mul+ 4.53 4.77 4.58

Curie (Teacher) few-shot (5) 3.75 4.27 3.75

Davinci (175B)
zero-shot 4.83 4.87 4.84

few-shot (5) 4.88 4.90 4.90

COCOGEN (175B) few-shot (16) 4.48 4.70 4.55

Human 4.56 4.61 4.57

Table 1: Averaged 5-point Likert scale hu-
man evaluation for the original planning task.
Small students paired with our decoding algo-
rithm consistently outperform their teacher model
(text-curie-001) and are competitive with or-
der of magnitude larger models in zero/few-shot
settings. *CoCoGen [23] is a 16-shot baseline us-
ing code LLM.

Does multi-task distillation help bridge the
scale gap? As we observe, multi-task distilla-
tion almost always wins over its task-specific
counterpart with the exception of the smallest
student, PLASMA (770M). We posit that very
small student models might not have enough
capacity to leverage the related tasks efficiently
during multi-tasking.

Does verifier-guided decoding help bridge
the scale gap? Pairing models with our pro-
posed verifier-guided step-wise decoding sub-
stantially improves performance across students
of varying sizes over all aspects. Specifically,
compared with regular beam search, our pro-
posed decoding results in 7%-48% relative im-
provements in overall quality across different
student sizes. The improvements achieved by
the verifier-guided decoding is larger for smaller
students. We showcase the comparisons with
qualitative examples in Appendix Table 8.

The best distilled students with 770M, 3B, and
11B parameters achieved respectively 14.13%,
16%, and 22.59% relative improvements over
their teacher model (text-curie-001). Fi-
nally, our best distilled model (11B PLASMA-
Mul+) performs equally well as human and
is competitive with orders-of-magnitude larger
models (175B).6 Figure 3 visualizes how we
bridge the scale gap using our multi-task distil-
lation and verifier-guided step-wise decoding.

6Pairwise annotator agreements (i.e., how often do two annotators agree on the answer) are 0.78, 0.84, and
0.80 for coverage, order and overall quality, respectively.

6

Effect of symbolic distillation. In this experiment, we compare models trained/tested on human-
written pairs of (goal, plan) from ProScript dataset [34], our model-generated dataset COPLAN,
and the mix of both.

Test on → ProScript COPLAN

Train on ↓ Coverage Order
Overall

Quality
Coverage Order

Overall

Quality

ProScript 4.38 4.54 4.35 4.51 4.81 4.58

COPLAN 4.55 4.74 4.63 4.72 4.86 4.73

Mix 4.77 4.88 4.65 4.77 4.88 4.78

Table 2: Effect of symbolic knowledge distilla-
tion. The model trained on our COPLAN dataset
transfers better to other dataset, ProScript.

Models are initialized with T5-11B. We generate
plans using our proposed verifier-guided decod-
ing for randomly sampled 50 and 150 goals from
ProScript and COPLAN, respectively. We use
the same human evaluation setup as before. Ta-
ble 2 shows that training on our LLM-generated
COPLAN dataset, consistently transfers better
to human-written dataset, ProScript. Training
on the mix of both datasets, however, achieves
the best performance. Intuitively, we observe
that models are in general better at tackling
LLM-generated data.

3.2 Counterfactual Planning and Revision

Here, we seek to benchmark language models’ planning abilities under constrained (contextually
grounded) situations. This task goes beyond the original planning task, requiring models to produce
novel linguistic alternatives to unseen situations.

Evaluation Set. To create an evaluation set, we generate conditions and counterfactual plans for the
test set of ProScript following Step 1 in §2.1. We then only use human-verified tuples of (goal,
plan, condition, counterfactual plan) as our test set for counterfactual planning and revision tasks.

Setup. We compare 3B and 11B student models with GPT-3 Curie and the 175B teacher model,
text-davinci-003 in zero/few-shot settings. During inference, we use our proposed verifier-
guided step-wise beam search with α = 0.75 to outweigh student model’s probability over the verifier
validity score.7

Metric. We conduct human evaluation on the AMT platform. We generate (counterfactual) plans
for 300 randomly sampled examples using each model. We ask 3 human annotators to rate each
generated plan based on whether it contains the necessary steps to make the goal achievable while
satisfying the condition. We provide 3 options for the annotators to pick from: A: The plan contains
all the necessary steps to meet the requirements of the condition on the goal, B: The plan addresses the
condition, but it is trivial and lacks thoughtfulness8, and C: The plan does NOT address the condition
or does so very poorly. We take the majority vote for the final results. Details on crowd-sourcing
human evaluation can be found in Appendix Figure 11.

Results. Figure 4 depicts the results. Large students perform better on both tasks. In counterfactual
planning, our 11B PLASMA-Mul+ demonstrates a 93.33% success rate in producing high-quality
plans while adhering to the given condition, which is comparable to the performance of the 175B
parameter Davinci model in a zero-shot setting. Furthermore, our model generates slightly fewer
low-quality plans, only 7 as opposed to 12 by Davinci. While multi-tasking seems to be helpful in
(counterfactual) planning, this is not always the case for counterfactual revision. We hypothesize that
the reason for this could be that the original and counterfactual planning tasks, which do not involve
modifying an existing plan, may negatively impact the revision task. The best performance for the
counterfactual plan revision is achieved by Davinci (90%) followed by PLASMA+ (86.33%).9 We
also collect additional feedback from annotators on the errors made by models. Results are reported
in Appendix Table 11, showing “missing necessary steps“ is the most prevalent mistakes.

We provide qualitative examples of model generations across all three tasks in Table 4. More examples
of (good and bad) generations according to human annotators are provided in Appendix Tables 9, 10.

7We performed a hyperparameter search over α = {0.5, 0.75, 0.8}.
8An example of trivial modification is addressing the condition “you have no money” with adding an step

“find money” in the plan.
9Pairwise annotator agreements are 0.96 and 0.94 for counterfactual planning and revision, respectively.

7

20%

40%

60%

80%

100%

PlaSma+ (3B)

PlaSma-Mul+ (3B)

PlaSma+ (11
B)

PlaSma-Mul+ (11
B)

Curie z-shot

Curie f-s
hot

Davinci z-shot (1
75B)

Teacher: D
avinci f-s

hot (1
75B)

Good Trivial Disagreed Bad

264 264 274 280 204 208 280 287

20 12 7 7

67 58

12 9

Counterfactual Planning

20%

40%

60%

80%

100%

PlaSma+ (3B)

PlaSma-Mul+ (3B)

PlaSma+ (11
B)

PlaSma-Mul+ (11
B)

Curie z-shot

Curie f-s
hot

Davinci z-shot (1
75B)

Teacher: D
avinci f-s

hot (1
75B)

Good Trivial Disagreed Bad

220 234 259 251 133 127 270 266

40 36
17 29

141
122

19 11

Counterfactual Plan Revision

300 samples

Figure 4: Human evaluation results of 300 generations for counterfactual planning and revision
tasks. Left: in counterfactual planning, our best student model PLASMA-Mul+ (11B) with ×16 fewer
parameters is on par with GPT-3 Davinci model. Right: in counterfactual revision, our best student
model PLASMA+ (11B) is able to generate good counterfactual plans 86.33% of the time.

3.3 Application to Embodied Agents

An important application enabled by PLASMA is that of enabling an agent to plan according to a given
high-level goal. We evaluate PLASMA on the task of planning in the VirtualHome [29] environment.
In this environment, agents can perform household activities, e.g. “paint ceiling", through programs,
in the form of supported actions (42 in total) and arguments. For evaluation, we use their test set
consisting of 88 goals (and corresponding gold programs).

model
Executability

(%)

LCS

(%)

Correctness

(%)

Planner (175B) [11] 77.17 19.10 18.33

PLASMA-MulFT (11B) 76.38 28.36 41.38

PLASMA-Mul+FT (11B) 94.18 31.93 43.68

Human 100 N/A 66.66

Table 3: Human-evaluated correctness along with
(automatic) executability and LCS scores on Virtu-
alHome environment [29]. Steps generated by our
model is more executable and correct for accom-
plishing the task.

We compare our best student PLASMA-Mul
(11B) with Planner [11], a 1-shot GPT-3 (175B)
model with several inference-time strategies to
ensure executability in embodied environments.
We follow their procedure to translate generated
steps from natural language to steps executable
in the environment. To apply our model to Vir-
tualHome, we finetune PLASMA-Mul on ∼ 4K
human labeled examples and also finetune the
step verifier on the same data using the method
described in Section 2.3. We show, in Table 3,
that our model generates steps that are signifi-
cantly more executable (according to automatic
metric) and also more complete (according to
human judges). More experimental details can
be found in Appendix E.

4 Related Works

Procedural Planning The problem of planning to accomplish a goal via sub-steps is widely studied
in two contexts. One is script knowledge generation, which is a long-standing NLP problem [36].
Collecting script knowledge requires either human annotation [39], unsupervised feature-based
extraction [5], or, more recently, methods that utilize task-specific fine-tuned LLMs [34] and pipeline-
based approaches [35]. In addition, there is a line of procedural planning that involves planning with
executable actions that can be executed by robots in real-life environments [11, 1, 43, 12]. Recent
approaches view planning as a conditional text generation problem and use LLMs in a zero/few-shot
prompting mode to tackle the task [23, 11, 1, 22]. Despite showing strong performance, their success

8

Goal Condition Initial Plan Generated (Counterfactual) Plan

Empty lint filter Find lint filter > Remove lint filter > Clean lint filter >
Replace lint filter

If the lint trap is
too hot to touch

Unplug dryer > Open dryer > Locate lint trap > Use heat-
resistant glove or mitt to pick up lint trap > Pull lint trap
out of dryer > Empty lint trap

Load clothes into dryer > Locate lint trap >
Move hand towards lint trap > Grip lint trap
with fingers > Pull lint trap out of dryer > Use
other hand to lift lint from lint trap > Empty lint
filter

Load clothes into dryer > Locate lint trap > Use gloved
hand to move hand toward lint trap > Grip lint trap with
fingers > Use other hand to lift lint from lint trap > Remove
lint trap from dryer

Eat some ice cream
from an ice cream shop

Find ice cream shop > Enter ice cream shop > Find ice
cream > Choose ice cream > Eat ice cream

If you have
allergies to
dairy products

Decide to eat some ice cream from an ice cream shop >
Find an ice cream shop > Walk into ice cream shop > Ask
for a dairy-free ice cream > Pick out ice cream > Pay for
ice cream > Eat some ice cream from an ice cream shop

Decided to eat some ice cream from an ice
cream shop > Decide to eat ice cream > Gather
the family > Drive to ice cram parlor > Get fam-
ily out and lock car > Walk in ice cream shop
and sit > Eat some ice cream from an ice cream
shop

Decide to eat some ice cream from an ice cream shop >
Research ice cream shops in your area that offer dairy-free
options > Gather the family > Drive to ice cream parlor >
Get family out and lock car > Walk in ice cream shop and
sit > Ask the staff about their dairy-free options > Select a
dairy-free option > Eat some ice cream from an ice cream
shop

Table 4: PLASMA generations for (counterfactual) planning and revision tasks.

heavily relies on scale. However, in this paper, we seek to achieve comparable performance while
using more parameter-efficient and accessible models.

Symbolic Knowledge Distillation Crowd-sourcing human-written datasets at scale is both chal-
lenging and costly. Therefore, there has been a growing interest in using LLM-generated data to train
smaller models. This approach which falls under the conceptual framework of symbolic knowledge
distillation [41] has been applied to simpler classification tasks [37], reasoning [38, 10, 46, 7], as well
as commonsense and general knowledge base construction [41, 3]. This approach not only achieves
promising performance on smaller models but is also cost-efficient compared to pre-training smaller
models from scratch [13]. In a concurrent work, Yuan et al. [45] proposed a similar approach to distill
script knowledge from LLMs for constrained planning task. However, unlike our “conditions” which
can take free-form format, their constraints are limited to specific types by extending an original goal
with a modifier, intent or method.

Decoding-time Algorithm Decoding-time algorithm is an emerging approach for adapting language
models’ output for task-specific characteristics. Works in this line often focus on incorporating
explicit lexical constraints at inference time so that the model is bounded with certain generation
words [20, 19, 9, 26]. In addition to discrete lexical constraints, applying continuous optimization
functions such as KL loss has also been found to be effective [30, 31, 15, 8]. Perhaps our approach
is most similar to function-guided decoding methods. Krause et al. [14] and Yang et al. [44] fuse
next-token probability with desired attributes’ probabilities at inference using a discriminator model.
These and related token-level beam search variants assume access to per-token logits and gradient
updates. Our decoding method however only relies on model log-probabilities and a verifier to
facilitate semantic and temporal constraints at a step level.

5 Conclusions and Future Work

In this paper, we focus on procedural planning, a challenging task that involves decomposing high-
level goals into ordered steps. We introduce PLASMA as an effective approach that uses smaller
and more accessible models. By leveraging symbolic procedural knowledge distillation and an
inference-time algorithm, we have endowed smaller models with enhanced procedural knowledge
and planning capabilities. Furthermore, we introduced the task of Counterfactual Planning, which
involves generating/revising plans to accommodate realistic counterfactual scenarios. Our results
demonstrate that significantly smaller models can effectively compete with and often outperform

9

their larger teacher models in both original and counterfactual settings. We hope our work sheds light
on new directions towards developing smaller yet powerful multi-modal models for (counterfactual)
procedural planning and reasoning.

6 Acknowledgements

This work was funded in part by the DARPA MCS program through NIWC Pacific (N66001-19-2-
4031), and the Allen Institute for AI. We also thank the Beaker Team at the Allen Institute for AI for
helping with the compute infrastructure and OpenAI for providing access to the GPT-3 API.

References
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,

Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano,
Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers,
Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. Do as i can and not as i say: Grounding language in robotic
affordances. In arXiv preprint arXiv:2204.01691, 2022.

[2] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623,
New York, NY, USA, 2021. Association for Computing Machinery.

[3] Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Lianhui
Qin, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, and Yejin Choi. I2d2: Inductive
knowledge distillation with neurologic and self-imitation, 2023.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[5] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative event chains. In
Proceedings of ACL-08: HLT, pages 789–797, Columbus, Ohio, June 2008. Association for
Computational Linguistics.

[6] Katherine M Collins, Catherine Wong, Jiahai Feng, Megan Wei, and Josh Tenenbaum. Struc-
tured, flexible, and robust: benchmarking and improving large language models towards more
human-like behavior in out-of-distribution reasoning tasks. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 44, 2022.

[7] Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
ArXiv, abs/2212.10071, 2022.

[8] Cong Duy Vu Hoang, Gholamreza Haffari, and Trevor Cohn. Towards decoding as continuous
optimisation in neural machine translation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 146–156, Copenhagen, Denmark, September
2017. Association for Computational Linguistics.

[9] Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using
grid beam search. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1535–1546, Vancouver, Canada, July 2017.
Association for Computational Linguistics.

10

[10] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming
larger language models with less training data and smaller model sizes, 2023.

[11] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pages 9118–9147. PMLR, 2022.

[12] Peter Jansen. Visually-grounded planning without vision: Language models infer detailed plans
from high-level instructions. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 4412–4417, Online, November 2020. Association for Computational
Linguistics.

[13] Junmo Kang, Wei Xu, and Alan Ritter. Distill or annotate? cost-efficient fine-tuning of compact
models, 2023.

[14] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence
generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
4929–4952, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[15] Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia Tsvetkov. Controlled text generation as
continuous optimization with multiple constraints. In Neural Information Processing Systems,
2021.

[16] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019.

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[19] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan
Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic
a*esque decoding: Constrained text generation with lookahead heuristics. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Seattle, United States, July 2022. Association for
Computational Linguistics.

[20] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
NeuroLogic decoding: (un)supervised neural text generation with predicate logic constraints.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4288–4299, Online, June
2021. Association for Computational Linguistics.

[21] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8086–8098, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[22] Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric Wang, Miguel Eckstein, and
William Yang Wang. Neuro-symbolic procedural planning with commonsense prompting. In
The Eleventh International Conference on Learning Representations, 2023.

11

[23] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models
of code are few-shot commonsense learners. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 1384–1403, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics.

[24] OpenAI. Openai api pricing. 2023. Accessed: 2023-05-15.

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics.

[26] Damian Pascual, Béni Egressy, Florian Bolli, and Roger Wattenhofer. Directed beam search:
Plug-and-play lexically constrained language generation. ArXiv, abs/2012.15416, 2020.

[27] Douglas Pearson and John Laird. Incremental learning of procedural planning knowledge in
challenging environments. Computational Intelligence, 21:414–439, 11 2005.

[28] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
NeurIPS, 2021.

[29] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio
Torralba. Virtualhome: Simulating household activities via programs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8494–8502, 2018.

[30] Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D. Hwang, Ronan Le Bras,
Antoine Bosselut, and Yejin Choi. Back to the future: Unsupervised backprop-based decoding
for counterfactual and abductive commonsense reasoning. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 794–805, Online,
November 2020. Association for Computational Linguistics.

[31] Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based
constrained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 2022.

[32] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[34] Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, and
Yejin Choi. proScript: Partially ordered scripts generation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 2138–2149, Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics.

[35] Abhilasha Sancheti and Rachel Rudinger. What do large language models learn about scripts?
In Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages
1–11, Seattle, Washington, July 2022. Association for Computational Linguistics.

[36] Roger C. Schank and Robert P. Abelson. Scripts, plans and knowledge. In International Joint
Conference on Artificial Intelligence, 1975.

[37] Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 6943–6951, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics.

[38] Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling multi-step reasoning
capabilities of large language models into smaller models via semantic decompositions, 2022.

12

[39] Lilian D. A. Wanzare, Alessandra Zarcone, Stefan Thater, and Manfred Pinkal. A crowdsourced
database of event sequence descriptions for the acquisition of high-quality script knowledge.
In Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 3494–3501, Portorož, Slovenia, May 2016. European Language Resources
Association (ELRA).

[40] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022.

[41] Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Xim-
ing Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 4602–4625, Seattle, United States, July 2022. Association for Computational Linguistics.

[42] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[43] Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi, Marjorie Freedman, Ralph Weischedel,
and Nanyun Peng. Understanding multimodal procedural knowledge by sequencing multimodal
instructional manuals. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 4525–4542, Dublin, Ireland, May
2022. Association for Computational Linguistics.

[44] Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Association for Computational
Linguistics, 2021.

[45] Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, Soham Shah, Charles Jankowski, Yanghua
Xiao, and Deqing Yang. Distilling script knowledge from large language models for constrained
language planning. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 4303–4325, Toronto, Canada, July 2023.
Association for Computational Linguistics.

[46] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[47] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Eval-
uating text generation with BERT. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Supplementary Material

A COPLAN Analysis Details

A.1 Goal diversity

In this section, we demonstrate that the goals in our COPLAN dataset broadly cover a diverse set of
everyday, real-world human activities.

For this analysis, we first define seven goal-relevant categories based on categories defined by the US
Bureau of Labor Statistics10: (1) career and work related activities; (2) education and professional

10https://www.bls.gov/news.release/atus.t12.htm defines 11 categories to cover common every-
day civilian activities. We cluster these categories into five.

13

https://www.bls.gov/news.release/atus.t12.htm

growth; (3) financial and commercial activities; (4) fitness and health; (5) service and civic activities;
(6) social activities and relationships; and (7) self-improvement and leisure.

Next, using the seven categories, we manually annotate 200 most frequent verb unigrams, 300 most
frequent noun unigrams, and 300 most frequent nominal (nouns + adjectives) bigrams extracted from
the goals statement. Only when the unigram (e.g. “make”) or the bigram (e.g. “new word”) indicate
one of the seven categories (e.g., “close friend” for relationship or “college university” for education)
the instance is annotated with the category. Otherwise, it is annotated with an eight category, other.
For each goal in COPLAN, each (verb, noun) unigram or (nominal) bigram casts a category as a vote
if found in the annotated data. If not found, then it casts other as vote. Majority vote is taken as the
category of the larger goal statement.

Figure 5 shows the distribution of the activity types in COPLAN. Education is the largest category
(“join an online course to learn a new language”) followed by self-improvement (“develop my creative
writing skills”). Service (“cooking meals for a homeless shelter”), career (“get interview for a new
job”), and financial (“upgrade to a new car”) are the next largest categories. The other category
includes miscellaneous activies like chores and events like “vaccuum the livingroom floor”.

A.2 Condition diversity

We assess the diversity of the conditions in COPLAN by analyzing the verbal use and nominal trigrams
employed in the statements.

We manually analyze 20 most frequent verbs and phrasal verbs (e.g., “have access”) appearing in
the condition statements. The verbs are grouped into 5 semantic categories: (1) want (to want, to
desire, etc); (2) possess (to have, to possess, etc); (3) access (to obtain, to get, to procure etc); (4)
able (to be able to, be capable of, etc); and (5) trust (to be safe, to rely, etc). Note that each of these
categories include conditions of both polarity; for example, for possess, it includes both the condition
imposed by having (“have enough money”) and by lacking (“not have enough money”). A sixth
category, other, was included for the verbs not included in the above categories. For each condition in
COPLAN, the first trigram made up of verbs, adjectives, and nouns appearing after the main verb (e.g.,
“If you want to [apply to an online program]” –> main verb: want, trigram: apply online program)
were extracted. Trigrams were then associated with each of the 5 semantic categories based on the
main verb.

Figure 6 shows the most frequent unique trigrams in each category. The graph includes the 20
most frequent trigrams for each category. The displayed trigrams were manually clustered when
appropriate for readability purposes (e.g., “take course online” clustered with “take online course”).

Fitness
3%

Social
5%

Financial
8%

Career
9%

Service
14%

Self-Improvement
20%

Other
20%

Education
21%

Figure 5: Goal diversity in COPLAN Figure 6: Condition diversity in COPLAN

14

We find a wide variety of real-world constraints that pose varying levels of restriction such as
preference and desire (“want to take an online course”) and hindrances posed by the state of having
or not having something (“not having enough money” or “having a disability”).

B Additional Experimental Details

B.1 Critic Models: Collecting Human Annotations

We gather human annotations of valid vs. invalid teacher generations. Annotations are crowdsourced
through the Amazon Mechanical Turk (AMT) platform. We qualify 263 best performing workers
through a paid qualification round. Additionally, we chose annotators among those who were located
in US, GB and CA, and had 98% approval rate for at least 10,000 previous annotations. Crowdworker
compensation for qualification and annotation HITs is maintained at an average of $15 per hour.

Plans. For plans, the crowdworkers were presented with randomly-sampled 13K generated (goal,
plan) pairs, and were asked to evaluate the plans along three dimensions: topicality—the topic of the
plan is relevant and appropriate for the goal, ordering—the steps in the plan are appropriately ordered,
and completeness—the plan provides complete and informative steps to achieve the goal. We asked
the workers to evaluate the goal’s achievability as a separate (fourth) dimension. Each dimension was
rated on a 5-point likert scale with three valid labels (Definitely, Mostly, and Somewhat; numeric
value 1) and two invalid labels (Hardly, Not at all; numeric value 0). Each (goal, plan) pairs were
annotated by three crowdworkers. The template used is shown in Figure 9.

We determine the validity of a (goal, plan) pair in the following manner. We then calculate the mean
score (over the three annotator responses) for each of the dimensions. A (goal, plan) pair is considered
valid only if: (1) it receives a score greater than 0.25 for each of the achievablility, topicality, or
ordering dimensions, and (2) receives a scores greater or equal to 0.65 on the completeness dimension.
Failing that, a pair is considered invalid.

Conditions. For conditions, we collect human judgements on whether the condition makes the goal
more specific or harder to achieve (but not impossible) on a randomly-sampled set of 6100 generated
tuples of (goal, plan, condition). We include screenshot of our annotation template in Figure 10.

batch size learning rate

Plan Critic 16 1e-6

Condition Critic 32 1e-5

Counterfactual Critic 32 1e-6

Table 5: Hyper-parameter values for
training different critic models.

Counterfactual Plans. And finally, for counterfactual
plans, we collect 10.5K human judgements on whether
the modified plan contain all the necessary steps to make
the goal achievable while adhering to the condition. We
include screenshot of our annotation template in Figure
11.

B.2 Critic Models: Training Details

We train 3 binary classifiers (critics) for filtering out low quality teacher generations in §2.1 using
pre-trained RoBERTa-Large [17]. We conduct a small grid search on validation loss for batch size
bs = {16, 32, 64} and learning rate lr = {1e− 4, 1e− 5, 1e− 6, 5e− 6}. We report the effective
hyper-parameters for each critic in Table 5. We use early stopping on validation loss.

B.3 Training the Verifier

Constructing Pseudo-negative Examples. For training the step verifier, we use the human-written
plans [34] to construct positive examples of (plan-so-far, next-step) pairs and devise three main
perturbation strategies to automatically construct negative examples as explained below:

• Reordered Steps: Conflicting logical order results from inaccurate causal or temporal dependencies
in a plan. Thus, we apply both near and distant reordering by randomly reordering two consecutive
and two distant steps.

• Repetitive Steps: Degeneration i.e., generating repetitive text is commonly observed in language
models. Similarly, we include both near and distant repetition by repeating the immediate previous
step and distant previous step as a pseudo-negative next-step.

15

• Missing Steps: Another common mistake made by language models is missing necessary steps,
leading to incoherent plans. To simulate this behaviour, we randomly select a non-immediate step
as a pseudo-negative next-step.

We collect a training set of 47k positive and negative pairs of (plan-so-far, next-step) using only 3k
human-written plans.

Training Details. We fine-tune RoBERTa Large [17] as a binary classifier identifying the validity
of a candidate next-step. We train for 10 epochs with early stopping on validation accuracy using
batch size of 32 and learning rate of 1e− 5.

Category Goal Condition

Location Purchase gardening supplies there are no local gardening stores nearby
Sing the lyrics you want to sing the lyrics in a recording studio

Equipment Studying for the exam you want to use a laptop or computer
Practice pottery techniques you don’t have the right tools or clay

Safety Take out several plates the plates are too heavy or fragile
Transport materials home the car breaks down or runs out of gas

User’s condition/
specification

Practice playing the instrument you are unable to read sheet music
Rent rock climbing equipment you need size specific equipment

Table 6: Examples for different categories of conditions in COPLAN dataset.

modelsize BLEU ROUGE-2 ROUGE-L BERT-f1

Distilled 770M

PLASMA 12.97 14.02 28.23 84.31

PLASMA + 14.26 16.31 31.02 85.30

PLASMA-Mul 14.47 14.43 27.99 84.02

PLASMA-Mul+ 14.49 16.70 31.49 85.35

Distilled 3B

PLASMA 12.89 14.39 28.57 84.70

PLASMA + 13.92 15.56 30.83 85.19

PLASMA-Mul 13.62 15.42 29.31 84.80

PLASMA-Mul+ 14.96 16.80 31.97 85.28

Distilled 11B

PLASMA 12.64 13.93 28.14 84.56

PLASMA + 14.65 15.84 31.04 85.33

PLASMA-Mul 13.61 15.67 29.99 85.10

PLASMA-Mul+ 15.54 16.76 31.98 85.37

Curie (Teacher) few-shot (3-5) 7.13 9.24 22.78 83.08

Davinci (175B)
zero-shot 4.98 7.81 21.38 81.20

few-shot (3-5) 10.27 10.27 24.57 83.48

CoCoGen (175B) few-shot (16) 18.07 21.01 33.99 86.41

Table 7: Automatic Evaluation Results for the Planning task. Note that the human-written plans are
not the only possible plans, hence these automatic metrics may not provide an informative measure
of performance.

C Out-of-domain Evaluation
[6] proposed two out-of-distribution reasoning tasks to evaluate LLMs,

Model % good
PLASMA 71
GPT-3 (from [6]) 36

GPT-3 zero shot 64

Table 12: Percent of generated counter-
factual plans which have been rated as
good by annotators.

one of which involved constrained planning. For a given
goal and one or more conditions, the task is to gener-
ate a plan. We evaluate PLASMA on the 28 constrained
goals provided by the paper. We compare our generations
to the GPT-generated plans provided by the paper and
text-davinci-002 prompted in a zero shot manner. To
evaluate the generations we perform a human evaluation,
as described in §D.2.

16

Model Plan
Goal: put coffee in coffee machine

Curie (Teacher) Step 1: find coffee machine Step 2: unlock coffee machine Step 3: put coffee in coffee
machine Step 4: close coffee machine Step 5: wait a few minutes Step 6: coffee should
be ready

PLASMA-Mul (11B) Step 1: get coffee Step 2: put coffee in coffee machine Step 3: turn on coffee machine
Step 4: wait for coffee to brew Step 5: drink coffee

PLASMA-Mul+ (11B) Step 1: buy coffee beans Step 2: grind the coffee beans Step 3: put the ground coffee
into the coffee filter Step 4: put the filter into the machine Step 5: turn the machine on
Step 6: wait for the coffee to brew Step 7: enjoy your coffee

Goal: put on baseball jersey
Curie (Teacher) Step 1: get baseball jersey Step 2: put baseball jersey on Step 3: take baseball jersey off

PLASMA (11B) Step 1: find a baseball jersey Step 2: put on baseball jersey Step 3: take off baseball
jersey Step 4: put on another baseball jersey Step 5: take off second baseball jersey Step
6: put on third baseball jersey Step 7: put on fourth baseball jersey

PLASMA+ (11B) Step 1: walk to closet Step 2: open closet Step 3: look for baseball jersey Step 4: find
baseball jersey Step 5: take baseball jersey out of closet Step 6: put on baseball jersey

Goal: sit at the table with dinner date
Curie (Teacher) Step 1: text or call the person to let them know that you will be late Step 2: arrive at the

restaurant on time Step 3: take a seat at the table Step 4: wait for the other person to
arrive Step 5: eat dinner Step 6: say goodbye and thank you

PLASMA (3B) Step 1: find dinner date Step 2: go to dinner date’s house Step 3: sit at the table Step 4:
talk to dinner date Step 5: eat dinner Step 6: leave dinner date’s house

PLASMA+ (3B) Step 1: choose a restaurant Step 2: make a reservation Step 3: drive to the restaurant
Step 4: park the car Step 5: enter the restaurant Step 6: find a seat Step 7: sit at the table
with dinner date

Goal: brush all teeth
Curie (Teacher) Step 1: get in the car Step 2: drive to the dental office Step 3: park the car Step 4: go

inside the office Step 5: pay the bill Step 6: get a receipt Step 7: brush all teeth Step 8:
leave office

PLASMA (770M) Step 1: Get toothbrush Step 2: Get toothpaste Step 3: Get toothbrush Step 4: Get
toothbrush Step 5: Get toothbrush Step 6: Get toothbrush Step 7: Brush all teeth

PLASMA+ (770M) Step 1: Get toothbrush Step 2: Get toothpaste Step 3: Put toothpaste on toothbrush Step
4: Grab toothbrush Step 5: Hold toothbrush up to mouth Step 6: Brush all teeth

Table 8: Qualitative examples generated by different models for the original planning task.

The human evaluation results in Table 12 show that
PLASMA outperforms the other baselines in this out-of-domain subset of counterfactual planning task.

D Evaluation Details

D.1 Automatic Evaluation

We report automatic evaluation of models for the original planning task in Table 7. Note that the
human-written plans are not the only possible plans, hence these automatic metrics may not provide
an informative measure of performance.

D.2 Human Evaluation on AMT

All human evaluations were conducted on the Amazon Mechanical Turk (AMT). We sourced our
annotators from the same pool of qualified workers (see B.1). Throughout the entirety project, we
maintained an average of $15/hour pay rate based on our estimation of time needed to complete
the task. Each examples were annotated by 3 workers and majority vote was taken for the reported

17

Type Conditional Plan

good

Goal:
eat ice cream if you have an ice cream maker

Step 1: Decide to eat ice cream
Step 2: Locate the ice cream maker
Step 3: Turn on the ice cream maker
Step 4: Add ingredients to the ice cream maker
Step 5: Follow the instructions to churn the ice cream
Step 6: Remove the ice cream from the ice cream maker
Step 7: Put the ice cream in a bowl
Step 8: Eat ice cream

good

Goal:
brush all teeth if you are out of toothpaste

Step 1: Decided to brush all teeth
Step 2: Locate a store that sells toothpaste
Step 3: Purchase toothpaste
Step 4: Drive to the store
Step 5: Purchase toothpaste
Step 6: Drive back home
Step 7: Unpack the toothpaste
Step 8: Open the toothpaste
Step 9: Brush all teeth

bad

Goal:
write names on the cards if you have a shaky hand

Step 1: find a pen or pencil with a large tip
Step 2: hold the pen or pencil in one hand
Step 3: hold the pen or pencil in the other hand
Step 4: use a pen or pencil to write the names on the cards
Step 5: once the names are on the cards, place them in a drawer or file
Step 6: close the drawer or file
Step 7: write names on the cards

bad

Goal:
walk into town if you have a disability that limits your mobility

Step 1: Decide to walk into town
Step 2: Put on shoes
Step 3: Get a cane or other mobility aid if necessary
Step 4: Put the cane or other mobility aid in a backpack
Step 5: Put the backpack on
Step 6: Leave the house
Step 7: Walk to the bus stop
Step 8: Take the bus into town
Step 9: Walk into town

Table 9: Qualitative examples of the counterfactual planning task.

18

Type Original Plan Counterfactual Plan

good

Goal: empty lint filter
Step 1: load clothes into dryer
Step 2: locate lint trap
Step 3: move hand towards lint trap
Step 4: grip lint trap with fingers
Step 5: pull lint trap out of dryer
Step 6: use other hand to lift lint
from lint trap
Step 7: empty lint filter

Goal: empty lint filter if the lint trap
is too hot to touch
Step 1: Load clothes into dryer
Step 2: Locate lint trap
Step 3: Move hand towards lint trap
Step 4: Use a heat-resistant glove to grip
lint trap with fingers
Step 5: Pull lint trap out of dryer
Step 6: Use other hand to lift lint from lint trap
Step 7: Empty lint filter

good

Goal: take a shower after work
Step 1: decided to take a shower after work
Step 2: drive home from work
Step 3: go to bath room
Step 4: take off clothes
Step 5: start water to get heat
Step 6: take hot shower
Step 7: take a shower after work

Goal: take a shower after work if you want to
take a shower at the gym
Step 1: Decide to take a shower after work
Step 2: Drive to gym
Step 3: Go to locker room
Step 4: Remove clothes
Step 5: Enter shower room
Step 6: Start water to get heat
Step 7: Take hot shower
Step 8: Take a shower after work

bad

Goal: empty old left overs from the fridge
Step 1: go through the house
Step 2: walk into the kitchen
Step 3: locate the refridgerator
Step 4: walk to the refridgerator
Step 5: grab the door handle
Step 6: open the refrigerator door
Step 7: empty old left overs from the fridge

Goal: empty old left overs from the fridge
if you have difficulty bending down
Step 1: go through the house
Step 2: walk into the kitchen
Step 3: locate the refridgerator
Step 4: walk to the refridgerator
Step 5: grab a chair or stool
Step 6: place the chair or stool in front
of the refrigerator
Step 7: use the chair or stool to open
the refrigerator door
Step 8: empty old left overs from the fridge

bad

Goal: buy a new watch
Step 1: decided to buy a new watch
Step 2: search the internet for watch retailers
Step 3: pick a reliable retailer
Step 4: search the retailer site for watches
Step 5: add watch to cart
Step 6: click check out
Step 7: add payment information
Step 8: add address information
Step 9: buy a new watch

Goal: buy a new watch if your
payment information is compromised
Step 1: decide to buy a new watch
Step 2: search the internet for watch retailers
Step 3: pick a reliable retailer
Step 4: search the retailer site for watches
Step 5: add watch to cart
Step 6: click check out
Step 7: add payment information
Step 8: verify payment information
Step 9: buy a new watch

Table 10: Qualitative examples of the counterfactual plan revision task.

19

Counterfactual Planning Counterfactual Revision

Error Type
Edits

Required

Missing

steps

Unnecessary

steps

Edits

Required

Missing

steps

Unnecessary

steps

Plasma+ (3B) 4.66 8.33 3.66 13.33 19.33 6.00

Plasma-Mul+ (3B) 4.33 7.66 3.66 10.66 14.66 4.33

Plasma+ (11B) 3.66 5.00 3.33 4.66 10.00 3.33

Plasma-Mul+ (11B) 3.00 3.33 3.66 6.00 11.66 4.66

curie-001 zero-shot 7.00 27.00 6.66 26.00 49.33 13.66

curie-001 few-shot 6.00 25.33 5.00 30.00 48.00 13.33

davinci-003 zero-shot 1.33 6.33 0.66 5.33 7.33 2.66

davinci-003 few-shot 1.33 3.00 0.66 4.33 8.66 2.66

Table 11: Percent of generated (counterfactual) plans with each error type. “Missing Steps” is the
most common error types across all models.

results. The layout templates for evaluating plans and counterfactual plans are shown in Figures 9
and 11, respectively.

E Experimental Details of VirtualHome Evaluation

We follow the same experimental setup and metrics for evaluation as Planner [11]. The test set
consists of 88 high-level goals. To translate a generated natural language step into an executable
step, we follow [11] and find an executable action closest in embedding space to the generated step.
To compute these embeddings, we use the stsb-roberta-large model. Executability and LCS
are computed identical to [11]. Due to challenges with reproducibility of GPT-3 outputs, evaluation
results of GPT-3 do not exactly match between our works.

F Additional Checklist Support

F.1 IRB and Annotation Ethics

We obtained IRB exemption for our data collection and evaluation from our institution’s internal
review board. In full compliance to the exemption clauses as published in the code of federal
regulations (45 CFR 46.104(d)(2,3)), we did not collect any deanomyzing information, and we do not
publish our dataset with worker specific information such as the MTurk’s worker id. Based on our
exempted status, according to our internal regulations, does not require for us to use consent forms
with our crowdsourcing.

Additionally, our data collection and evaluation efforts only involve human judgments about world
knowledge relating to general real-world goals and plans. We have no reason to believe that our
crowdsourcing posed harm or discomfort beyond the minimal risk as defined by 45 CFR 46.102(i).

F.2 Limitations

One potential limitation of our work is that the verbalization component of our framework involves
open text generation from large-scale language models (GPTs). Works such as Bender et al. [2]
have argued that generations from LLMs can be prone to harmful biases stemming from the massive
language data they are trained on. In the process of constructing the dataset, we have not directly
observed levels of biases to cause us alarm. We believe harmful and discriminatory generations are
largely mitigated by the very nature of the goals and scripts we obtain: our data is primarily composed
of low-level everyday situations such as education, self-care, and mundane chores like vacuuming the
floor or cooking a meal (see §A.1,A.2). This said, we acknowledge that prejudices like gender roles,
for example, do also surface in the most mundane scenarios.

20

A related limitation is that LLMs have been trained on primarily English pretraining data, likely
sourced from texts that reflect North American or European culture or norms. Consequently, we note
that the goals in COPLAN may reflect the goals that are most culturally expected or appropriate to the
cultures of English-speaking countries. This is also expected of the plans that may include culturally
limited processes and procedures. This should be a consideration that any follow-up studies using
our data and model should attend to. Extending our study to include more socio-culturally inclusive
goals and plans is a compelling direction for our future research.

F.3 Broader Impacts

Related to the concerns discussed in the Limitations section above, it is important for any downstream
application to be aware that our data may have a limited representation of the goals and procedures of
dominant cultures of the English-speaking countries.

21

Example Template:

Given a goal write down a list of steps to achieve the goal:

Goal: take a nap on the bed
Step 1: sit on the bed for a little
Step 2: pull back the blanket
Step 3: pull back the sheet
Step 4: fluff up the pillow
Step 5: lay down on the bed
Step 6: fall asleep on the bed
Step 7: take a nap on the bed
...

Goal: hire a dog walker
Step 1:

Prompt Prefix Generator:

def generate_prompt_prefix ():
w1_list = ["For a given goal", "Given a goal"]
w2_list = ["write down", "break down into", "put down" "jot

down"]
w3_list = ["steps", "subgoals", "a list of steps", "several

steps", "several subgoals",
"some steps", "some small
steps"]

w4_list = ["to achieve the goal", "for achieving the goal",
"to attain the goal"]

w1 = random.sample(w1_list , 1)[0]
w2 = random.sample(w2_list , 1)[0]
w3 = random.sample(w3_list , 1)[0]
w4 = random.sample(w4_list , 1)[0]

prompt_prefix = f"{w1}, {w2} {w3} {w4}.\n\n"
return prompt_prefix

Figure 7: Randomize prompt template for eliciting plans.

22

Prompt Template (Conditions)

You want to use social media. How can you do this in 7 steps?
step 1: decided to use social media; step 2: Grab the phone;
step 3: Open, Start phone; step 4: Go to app store; step 5:
Download Facebook from store; step5: Open and use
facebook; step6: use social media
What is the hindrance that might affect the plan above?
If your phone screen is cracked.

You want to plant a tomato plant. How can you do this in 7
steps?
step 1: decided to plant a tomato plant; step 2 : Go to
nursery; step 3: Purchase tomato seedling.; step 4: Purchase
potting soil and a pot.; step 5: Return to home.; step 6: Plant
seedling in soil and pot.; step 7: plant a tomato plant
What is a specification that might affect the plan above?
If you want to use compost for soil.

… x 3

You want to print the report. How do you do this in 7 steps?
step 1: type the edited draft; step 2: save the edited draft;
step 3: open the file menu in the word processor; step 4:
select print from the file menu; step 5: select printer settings;
step 6: send document to the printer; step 7: print the report
What is the hindrance that might affect the plan above?

Prompt Template (Counterfactual Plan)

You want to learn how to swim. How can you do this in 7
Steps?
Step 1: Decided to learn how to swim; Step 2: Find swimming
instructor; Step 3: Travel to pool; Step4: Meet swimming
teacher; Step 5: Practice swimming during classes; Step 6:
Review mistakes with teacher until right; Step 7: Learn how to
swim.
You want to learn how to swim. How can you do this in
several steps if you forget your swimsuit?
Step 1: Decided to learn how to swim; Step 2: Find swimming
instructor; Step 3: Travel to pool; Step4: Meet swimming
teacher; Step 5: If you have forgotten your swimsuit, ask the
instructor if it is possible to borrow one or if there is a place
where you can purchase one; Step 6: Practice swimming
during classes; Step 7: Review mistakes with teacher until
right; Step 8: Learn how to swim

… x 3

You want to pick up pen. How can you do this in 6 steps?
step 1: look for a pen; step 2: find a pen; step 3: walk over to
pen; step 4: extend hand out to pen; step 5: reach for pen;
step 6: pick up pen
You want to pick up pen. How can you do this in several
steps if you want to pick up the pen from a high shelf?

Figure 8: Prompt templates for acquiring Conditions and Counterfactual Plans.

23

Figure 9: AMT human evaluation template for the original planning task. For validation round we
substituted goal achievability (is the goal achievable with appropriate steps?) for overall question (is
the plan overall good?).

24

Figure 10: AMT template for assessing validity of conditions for critic model training.

25

Figure 11: AMT human evaluation template for counterfactual plan revision. We use a similar layout
for counterfactual planning task only removing the initial plan.

26

Goal Condition Initial Plan Generated (Counterfactual) Plan

Buy a new
videogame

Find a store that sells videogames > Go to the
store > Find the videogame you want to buy
> Buy the videogame > Take the videogame
home > Play the videogame

If the game
store
is too far
away

Decide to buy a new videogame > Research
online game stores > Compare prices and re-
views > Select the game to buy > Purchase
the game online > Wait for the game to be
delivered > Buy a new videogame

Decided to buy a new videogame
> Decide on game > Get into car
> Drive to game store > Walk into
game store > Find the desired game
> Buy a new videogame

Decided to buy a new videogame > Decide on
game > Search for the game online > Com-
pare prices online > Purchase the game online
> Wait for the game to be delivered > Unbox
the game > Play the game > Enjoy the game

get extra exer-
cise

Set a goal for how many hours a week you
want to exercise > Research different types of
exercise > Choose one type of exercise to start
with > Make a plan to follow the exercise plan
> Start exercising > Keep exercising

If the fitness
activity
presents a risk of
injury

Decide what type of exercise you would like
to do > Research the activity to make sure you
understand the risks and benefits > Consult
with a medical professional to ensure the ac-
tivity is safe for you > Find a place to do the
activity > Set a goal for how often you would
like to do the activity > Start doing the activity
> Monitor your progress and adjust the activ-
ity as needed > Get extra exercise

Decided to get extra exercise > Open
the calendar > Identify open time
slots during the week > Schedule a
fitness activity during free time > Set
reminder for activity on phone > At-
tend weekly fitness activity > Get ex-
tra exercise

Decide to get extra exercise > Open the calen-
dar > Identify open time slots during the week
> Research and select a fitness activity that
presents a low risk of injury > Schedule the
fitness activity during free time > Set reminder
for activity on phone > Attend weekly fitness
activity > Get extra exercise

chop the wood Get a chopping block > Get a chopping knife
> Chop the wood > Clean the chopping block
> Put the chopping block away

If you have
a chainsaw

Pick up the wood > Place the wood on the
ground > Set up the chainsaw > Sharpen the
chainsaw > Start the chainsaw > Cut the wood
> Chop the wood

Pick up axe > Pick up a piece of
wood > Check the condition of wood
> Make sure wood is dry enough >
Set the wood upright > Swing the axe
at wood > Chop the wood

Pick up the chainsaw > Pick up a piece of
wood > Check the condition of wood > Make
sure wood is dry enough > Set the wood up-
right > Start the chainsaw > Guide the chain-
saw along the wood > Chop the wood

Table 13: Additional PLASMA generations for (counterfactual) planning and revision tasks.

27

	Introduction
	Small Language Models as Procedural Knowledge Models
	CoPlan: Procedural Knowledge Verbalization from Large Teachers
	PlaSma: Procedural Knowledge Distillation into Small Students
	PlaSma+: Advancing Student with Verifier-guided Decoding

	Experiments
	Goal-based Planning
	Counterfactual Planning and Revision
	Application to Embodied Agents

	Related Works
	Conclusions and Future Work
	Acknowledgements
	CoPlan Analysis Details
	Goal diversity
	Condition diversity

	Additional Experimental Details
	Critic Models: Collecting Human Annotations
	Critic Models: Training Details
	Training the Verifier

	Out-of-domain Evaluation
	Evaluation Details
	Automatic Evaluation
	Human Evaluation on AMT

	Experimental Details of VirtualHome Evaluation
	Additional Checklist Support
	IRB and Annotation Ethics
	Limitations
	Broader Impacts

