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Abstract
Recent years have brought about a renewed interest in com-
monsense representation and reasoning in the field of natural
language understanding. The development of new common-
sense knowledge graphs (CSKG) has been central to these
advances as their diverse facts can be used and referenced
by machine learning models for tackling new and challeng-
ing tasks. At the same time, there remain questions about the
quality and coverage of these resources due to the massive
scale required to comprehensively encompass general com-
monsense knowledge.
In this work, we posit that manually constructed CSKGs will
never achieve the coverage necessary to be applicable in all
situations encountered by NLP agents. Therefore, we propose
a new evaluation framework for testing the utility of KGs
based on how effectively implicit knowledge representations
can be learned from them.
With this new goal, we propose ATOMIC20

20, a new CSKG of
general-purpose commonsense knowledge containing knowl-
edge that is not readily available in pretrained language mod-
els. We evaluate its properties in comparison with other lead-
ing CSKGs, performing the first large-scale pairwise study
of commonsense knowledge resources. Next, we show that
ATOMIC20

20 is better suited for training knowledge models
that can generate accurate, representative knowledge for new,
unseen entities and events. Finally, through human evalu-
ation, we show that the few-shot performance of GPT-3
(175B parameters), while impressive, remains ∼12 absolute
points lower than a BART-based knowledge model trained on
ATOMIC20

20 despite using over 430x fewer parameters.

1 Introduction
Commonsense understanding and reasoning remain long-
standing challenges in general artificial intelligence. How-
ever, large-scale language models have brought tremendous
progress in the sub-field of natural language processing.
Such large-scale language models (Radford et al. 2018; De-
vlin et al. 2019; Brown et al. 2020) trained on extreme-scale
data have been shown to effectively adapt to diverse down-
stream tasks, achieving significant performance gains across

*The authors contributed equally to this work.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1ATOMIC20
20 and ATOMIC-2020 can be used interchangeably,

but for brevity we use ATOMIC20
20 in this paper.
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Figure 1: A tiny subset of ATOMIC20
20, a large atlas of social

and physical commonsense relations. Relations in the top-
left quadrant reflects relations from ATOMIC.1

natural language benchmarks (Wang et al. 2019). Interest-
ingly, as these models have grown larger (and trained on
larger amounts of data), their benchmark performance has
continued to improve (Raffel et al. 2019) despite limited
conceptual improvements, leaving open questions regarding
the source of these remarkable generalization properties.

Recent work has hypothesized that many of these per-
formance gains could be a result of language models be-
ing able to memorize facts in their parameters during train-
ing (Roberts, Raffel, and Shazeer 2020) that can be lever-
aged at evaluation time. As a result, a new paradigm of
language models as knowledge bases has emerged (Petroni
et al. 2019). In this setting, language models are prompted
with natural language prefixes or questions, and they express
knowledge through language generation. The initial success
of this paradigm for representing commonsense knowledge
(Davison, Feldman, and Rush 2019; Tamborrino et al. 2020)
has led to the optimistic claim that language models com-
prehensively encode commonsense knowledge, and remove
the need for structured knowledge resources.
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Figure 2: ATOMIC20
20 tuple count distribution compared to ATOMIC (Sap et al. 2019) and CONCEPTNET, either its commonsense

subset (Li et al. 2016) or the full set (Speer, Chin, and Havasi 2017).

We take a more skeptical view of this capacity of lan-
guage models – Does scaling up language models actually
endow them with commonsense knowledge? While language
models can successfully express certain types of knowledge,
their best results are observed in narrowly specific condi-
tions – we show (cf. §5) that they perform better when evalu-
ated on knowledge bases that prioritize ontological relations
and whose examples resemble language-like assertions (e.g.,
mango IsA fruit).2 Consequently, the types of knowledge
that can be directly accessed through the language model’s
interface remains limited.

However, prior work has also shown that training lan-
guage models on knowledge graph tuples leads them to learn
to express their implicit knowledge directly (Bosselut et al.
2019), allowing them to provide commonsense knowledge
on-demand. These adapted knowledge models have exhib-
ited promising results on commonsense benchmarks com-
pared with methods that require linking entities to knowl-
edge graphs (Shwartz et al. 2020; Liu et al. 2020). Inspired
by these successes, we propose a dual use for commonsense
knowledge bases going forward: as static graphs that can be
linked to for discrete knowledge access, and as resources
for adapting language models to hypothesize commonsense
knowledge about un-annotated entities and events.

With this second purpose in mind, we propose eval-
uating commonsense knowledge resources based on the
complementary information they can bring to pretrained
language models. We construct ATOMIC20

20, a new, high-
quality knowledge graph with 1.33M commonsense knowl-
edge tuples across 23 commonsense relations. We compare
ATOMIC20

20 with respect to its coverage and accuracy in com-
petition with other highly used CSKGs, such as CONCEPT-
NET (Speer, Chin, and Havasi 2017). Our results show that
ATOMIC20

20 is able to cover more correct facts about more
diverse types of commonsense knowledge than any exist-

2An observation supported by Brown et al. (2020)’s GPT-3
model, whose best few-shot performance on commonsense knowl-
edge benchmarks comes on the PhysicalIQA (Bisk et al. 2020) and
HellaSwag (Zellers et al. 2019) datasets.

ing, publicly-available commonsense knowledge resource.
However, our results also indicate that there remains a large
amount of exclusivity between these KGs, highlighting the
challenge of creating resources that cover the scale and di-
versity of general commonsense knowledge.

Furthermore, we formalize the COMET framework of
Bosselut et al. (2019) across different seed language models
and training knowledge graphs, and evaluate the common-
sense knowledge hypothesized by these adapted knowledge
models. Our empirical study yields two promising conclu-
sions. First, it confirms that KG-adapted language models
learn to express knowledge more precisely than naive lan-
guage models trained only on language. And second, we
show that ATOMIC20

20 as a transfer resource leads to COMET
models that achieve the largest increase over their seed lan-
guage model (across all seed LMs) for the commonsense
knowledge types it covers, validating the importance of con-
structing knowledge resources with examples of knowledge
not readily found in language models.

Key Contributions: In summary, we make three key con-
tributions in this paper. We present ATOMIC20

20—a new com-
monsense knowledge graph covering social, physical, and
eventive aspects of everyday inferential knowledge (cf. §3).
Next, we compare ATOMIC20

20 with other prominent CSKBs
head-to-head and show that our new symbolic knowledge
graph is more accurate than any current CSKB (see Ta-
ble 2) (cf. §4). Finally, we show that our new neural
knowledge model COMET-ATOMIC20

20 successfully trans-
fers ATOMIC20

20’s declarative knowledge to beat GPT-3, the
largest pre-trained language model, in spite of using 400x
fewer parameters (see Table 6) (cf. §5). This demonstrates
the utility and importance of high-quality symbolic knowl-
edge provided by ATOMIC20

20 to generalize on commonsense
information that LMs cannot expressively capture on their
own (cf. §6).

2 Background
Commonsense Knowledge Graphs Large scale com-
monsense knowledge graphs are ubiquitous tools in natu-



ral language processing tasks as access to their facts allows
models to learn to reason over commonsense knowledge to
make predictions (Lin et al. 2019; Feng et al. 2020). In this
work, we evaluate three existing knowledge graphs, CON-
CEPTNET, ATOMIC, and TRANSOMCS on their coverage
and precision relative to our new resource ATOMIC20

20.3
The CONCEPTNET (v5.7) knowledge graph (Speer,

Chin, and Havasi 2017) consists of 36 relations focus-
ing mostly on taxonomic and lexical knowledge (e.g.,
RelatedTo, Synonym, IsA) and physical commonsense
knowledge (e.g., MadeOf, PartOf). CONCEPTNET (v5.7)
contains 3.4M entity-relation tuples (in English) collected
by crowdsourcing and merged with existing knowledge
databases from DBPedia, WordNet, Wiktionary, and Open-
Cyc. Since the knowledge are derived from human efforts,
the accuracy of CONCEPTNET (v5.7) knowledge is fairly
high, though the quality does vary depending on the sources
of knowledge and relation types. However, as highlighted
in (Davis and Marcus 2015; Sap et al. 2019), and shown in
Figure 2, the coverage of CONCEPTNET (v5.7) is limited to
mostly taxonomic, lexical, and object-centric physical com-
monsense knowledge. In fact, out of 3.4M tuples, 90% of
them correspond to taxonomic (e.g., IsA) or lexical (e.g.,
Synonym, RelatedTo) knowledge, making the common-
sense portion of CONCEPTNET (v5.7) relatively small.

The ATOMIC (Sap et al. 2019) knowledge graph con-
sists of 880K of tuples across 9 relations that cover so-
cial commonsense knowledge (e.g, X gets X’s car repaired
xIntent to maintain the car), including dynamic aspects
of events such as causes and effects, if-then conditional
statements, and mental states. The ATOMIC dataset is col-
lected and validated completely through crowdsourcing.

The TRANSOMCS (Zhang et al. 2020a) knowledge
graph consists of 18.48M tuples that were automatically
converted from syntactic parses of sentences from various
web sources including Wikipedia, Yelp, and Reddit. The set
of relations used for the mapping is copied from CONCEPT-
NET. Although TRANSOMCS is much larger than other
commonsense knowledge graphs, the precision of the ex-
tracted knowledge is significantly lower compared to other
resources (cf. §4), and performs poorly as an adaptation re-
source relative to other KGs (cf. §5).

Language Models as Knowledge Bases Recent work
hypothesizes that pretrained language models represent
commonsense knowledge implicitly (Petroni et al. 2019;
Roberts, Raffel, and Shazeer 2020). However, the results
motivating these observations are often limited to narrowly
scoped subsets of commonsense knowledge that primarily
include taxonomic knowledge (e.g., mango IsA fruit) and
that are often found explicitly stated in text. However, com-
monsense facts are often implied (Gordon and Van Durme
2013), and as will be seen in our studies (cf. §4), state of the
art neural models struggle to express implicit commonsense
knowledge that involves complex relationships.

3We were unable to include Cyc (Lenat 1995) in our study due
to the discontinuation of its research license and the cost of the
commercial license (over $1M). CONCEPTNET includes a subset
of Cyc – OpenCyc.

To overcome this limitation, Bosselut et al. (2019) take
the best of both worlds between commonsense knowledge
graphs and pretrained language models. The commonsense
transformer, or COMET, adapts pretrained neural language
models by training on example tuples from commonsense
knowledge graphs. It takes a head/source phrase and a rela-
tion (e.g., take a nap Causes) and generates the tail/target
phrase (e.g., have energy). Bosselut et al. (2019) show that
COMET trained on the CONCEPTNET and ATOMIC knowl-
edge graphs is able to adapt to generate novel (and valid)
commonsense knowledge tuples.

Importantly, these neural knowledge models can produce
commonsense knowledge on-demand for any head entity
that can be expressed through language. This flexibility al-
lows them to be used out-of-the-box, and they have been ap-
plied to new, previously unexplored tasks, such as sarcastic
comment generation (Chakrabarty et al. 2020), therapy chat-
bots (Kearns et al. 2020), and automated story plot genera-
tion (Ammanabrolu et al. 2020). These contributions show
that progress on knowledge models opens up new down-
stream applications that were challenging to model before.

3 ATOMIC20
20

We present ATOMIC20
20, a commonsense knowledge graph

with 1.33M everyday inferential knowledge tuples about en-
tities and events. ATOMIC20

20 represents a large-scale com-
monsense repository of textual descriptions that encode both
the social and the physical aspects of common human ev-
eryday experiences, collected with the aim of being com-
plementary to commonsense knowledge encoded in cur-
rent language models. ATOMIC20

20 introduces 23 common-
sense relations types. They can be broadly classified into
three categorical types: 9 commonsense relations of social-
interaction, 7 physical-entity commonsense relations, and
7 event-centered commonsense relations concerning situa-
tions surrounding a given event of interest. The full inven-
tory of ATOMIC20

20 relations is listed in Table 1.
In terms of physical and event-centered commonsense,

by far, the two largest new relations in ATOMIC20
20 are

ObjectUse and HinderedBy. For ObjectUse, we fo-
cused on affordances of everyday objects such as “popcorn
bucket” that may be used for “holding popocorn” or “stor-
ing things”. For HinderedBy, we explore the notion that
many events in real world can be defeasible (Lascarides and
Asher 1991) by collecting hindrances to goals that may be
useful for tasks such as counterfactual reasoning. For exam-
ple X’s desires to adopt a cat may be hindered by finding out
that X is allergic to cats, which would necessitate X to ad-
just future actions accordingly (say, opt for hypoallergenic
options like tortoises).

In the case of ObjectUse, we collected over 130K ev-
eryday object-use pairs by asking crowdworkers for nec-
essary objects and their uses for each event in ATOMIC20

20.
For example, given “X eats popcorn” we elicited items such
as “popcorn bucket” with their various expected uses. The
number also reflects atypical usages gathered in a separate
pass where workers were asked to provide creative or re-
sourceful but feasible uses of the objects. Given “popcorn
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ObjectUse make french toast 165,590

AtLocation∗ basket; pantry 20,221

MadeUpOf dough; wheat 3,345

HasProperty∗ cooked; nice to eat 5,617

baker

CapableOf∗ coat cake with icing 7,968

Desires∗ quality ingredients 2,737

Not Desires∗ bad yeast 2,838
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X runs out
of steam

IsAfter X exercises in the gym 22,453

HasSubEvent become tired 12,845

IsBefore X hits the showers 23,208

HinderedBy drinks too much coffee 106,658

Causes takes a break 376

xReason did not eat breakfast 334

X watches
anyway isFilledBy the game; the TV 33,266
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X runs out
of steam

xNeed do something tiring 128,955

xAttr old; lazy; lethargic 148,194

xEffect drinks some water 115,124

xReact tired 81,397

xWant to get some energy 135,360

X votes
for Y

xIntent to give support 72,677

oEffect receives praise 80,166

oReact grateful; confident 67,236

oWant thank X; celebrate 94,548

Table 1: Relations in ATOMIC20
20 along with illustrative ex-

amples and their respective size. Relations that reflect se-
mantically identical categories to CONCEPTNET is marked
with an asterisk (∗).

bucket”, for instance, one might “wear it as a hat” for, say, a
costume party. For HinderedBy, we crowdsourced over
100K tuples of hindrances to existing ATOMIC20

20 events,
asking the workers to provide situations or events that might
pose as deterrence should the event be considered an achiev-
able goal (see Appendix A for further details). For social-
interaction commonsense, we primarily incorporated tuples
from ATOMIC, but also crowdsourced an additional 34K tu-
ples using the same approach as Sap et al. (2019).

ATOMIC20
20 also pulls commonsense tuples from the En-

glish subset of CONCEPTNET(v5.7) (latest version avail-
able; Speer, Chin, and Havasi 2017).4 Of the 3.4M En-
glish tuples in CONCEPTNET(v5.7), a small subset of
172K tuples was selectively chosen to be integrated into
ATOMIC20

20. This subset represents data carefully identified
to reflect commonsense information dealing with qualita-

4A CONCEPTNET(v5.7) fact is considered English if both the
head and tail concepts are marked with ‘/en/’ in the edge id.

Knowledge Base Accept Reject No Judgment

ATOMIC20
20 91.3 6.5 2.2

ATOMIC 88.5 10.0 1.5
CONCEPTNET 88.6 7.5 3.9
TRANSOMCS 41.7 53.4 4.9

Table 2: Accuracy - Percentage (%) of tuples in the knowl-
edge base evaluated by human crowdworkers as either al-
ways true or likely (Accept), farfetched/never or invalid (Re-
ject), or unclear (No Judgment).

tive human experiences. Among the eliminated data are
tuples with edge weight ≤ 0.5, dictionary or etymolog-
ically based knowledge (e.g., synonyms/antonyms, inflec-
tions), lexical hyper/hyponymic lexical relationships such as
IsA or InstanceOf, and relations based on lexical co-
occurrence (e.g., RelatedTo or LocatedNear), which
are easily recoverable from language models.5 After selec-
tive removal of these relations and a post-processing step
to ensure the removal of deterministic information such as
geographic facts (e.g., “shenzhen” AtLocation“china”),
tuples from each CONCEPTNET were examined for fur-
ther splits or joins to align with the existing structure of
ATOMIC20

20. A random 10% tuples from each selected re-
lations were then put through crowdsourced validity test-
ing (akin to the process described later in §4). Tuples that
were directly incorporated without further edits passed with
an acceptance rate of 93% or higher. A subset of relations
(i.e., CapableOf, MadeUpOf, HasProperty) were put
through additional crowdsourcing to weed out tuples that
were either invalid or found to hold prejudiced descriptions
of human entities. In the end, only 5 relations (marked with
an asterisk in Table 1) retain the CONCEPTNET’s original
meaning with a few relations that are cognates in ATOMIC20

20
(more details in Appendix A).

4 Symbolic Knowledge Graph Comparison
In this work, we compare our new ATOMIC20

20 knowledge
graph to three other prominent CSKGs: ATOMIC (Sap
et al. 2019), CONCEPTNET6 (Li et al. 2016), and TRAN-
SOMCS (Zhang et al. 2020a). We measure the accuracy of
tuples in each KG and compare the coverage of each CSKG
w.r.t. other CSKGs head-to-head.

Accuracy Assessment
In order to assess the accuracy of the knowledge represented,
3K random instances were extracted from each of the knowl-
edge graphs for a crowdsourced evaluation of the tuples.

Human Evaluation Setup. The evaluation was carried out
through crowdsourcing on the Amazon Mechanical Turk
platform. Workers were presented with knowledge tuples in

5CONCEPTNET 5.7 defines weight as “the strength with which
this edge expresses this assertion”. A pilot crowdsource assessment
step found any tuple with weight≤ 0.5 unreliable w.r.t. its validity.

6Hereafter, as we focus on CSKGs, by ConceptNet, we refer to
the commonsense subset, unless specified otherwise.



ATOMIC20
20 ATOMIC Relation CN T-OMCS

92.3 AtLocation* 89.4 34.3
93.9 CapableOf* 84.4 50.0
94.6 Causes 90.0 50.0
96.9 Desires* 96.3 48.2
93.9 HasProperty* 86.3 52.4
82.3 ObjUse/UsedFor 96.3 31.6
98.5 NotDesires* 96.3
96.9 HasSubevent 88.1 57.7

HasFirstSubevent 93.8 52.4
HasLastSubevent 95.6 38.2
HasPrerequisite 94.4 30.0

75.4 MadeUpOf/MadeOf 88.1 15.9
PartOf 71.9 46.5
HasA 77.5 43.5

96.9 HinderedBy
96.2 isAfter
95.4 isBefore
96.2 isFilledBy

ReceiveAction 84.4 56.4
91.5 86.3 oEffect
91.5 87.7 oReact
88.5 89.5 oWant
87.7 91.0 xAttr
80.8 87.2 xEffect
93.1 89.9 xIntent/MotivByGoal 84.4 27.1
87.7 85.1 xNeed
90.8 91.3 xReact
96.2 xReason
82.3 88.4 xWant/CausesDesire 90.0 35.9

Table 3: KG accuracy values broken down by relation.
Gray cells indicate statistically significant difference from
ATOMIC20

20 values. Dark gray cells signal instances where
ATOMIC20

20 values are significantly higher than its counter-
part KB. Relational cognates have been grouped together
and exact matches are asterisked (*) (cf. Table 1).

the form of (head, relation, tail) for annotation. To expe-
dite the human assessment of the tuples, each relation (e.g.,
xWant or AtLocation) was translated into a human-
friendly natural language form (e.g., “as a result, PersonX
wants” and “located or found at/in/on”, respectively; cf. Ap-
pendix B). The workers were asked to rate the tuples along
a 4-point Likert scale: always/often – the knowledge asser-
tion presented is always or often true, sometimes/likely – it is
sometimes or likely true, farfetched/never – it is false or far-
fetched at best, and invalid – it is invalid or makes no sense.
Any tuples receiving the former two labels are ranked as Ac-
cept and latter two as Reject. The workers were also given
a choice to opt out of assessment if the concepts were too
unfamiliar for a fair evaluation (No Judgment). Each task
(HIT) included 5 tuples of the same relation type, and each
tuple was labeled by 3 workers. For the results, we take the
majority vote among the 3 workers.

Results. ATOMIC20
20 outperforms other KGs in crowd-

sourced accuracy as shown in Table 2.7 ATOMIC ties with
CONCEPTNET with reasonably high accuracy, while TRAN-

7Overall inter-rater agreement measured by Fleiss’ κ of 0.46

SOMCS lags behind others with far lower accuracy. We pro-
vide a per-relation breakdown of accuracies in Table 3.

Between ATOMIC20
20 and ATOMIC, the variations in the

assessed accuracies are not found to be statistically sig-
nificant. Among the ATOMIC20

20 and CONCEPTNET rela-
tions that represent exact matches (marked with * in Ta-
ble 3), the differences are either not statistically significant
or when they are, ATOMIC20

20 improves upon the associ-
ated facts, reflecting that the preprocessing stages of CON-
CEPTNET integration were helpful in improving the qual-
ity of these relations (§3). Among cognates in ATOMIC20

20
and CONCEPTNET relations, two sets of relations fare sig-
nificantly worse in ATOMIC20

20 than in CONCEPTNET. In
the case of ObjectUse/UsedFor, this is likely due to
the fact that ATOMIC20

20’s ObjectUse includes atypical af-
fordances (cf. §3). In an annotation setting where workers
are asked to evaluate the truth or likelihood of an asser-
tion rather than feasibility of use, a portion of the atypi-
cal usages are seen as ‘farfetched’ and thus, rejected. In
the case of MadeUpOf/MadeOf, there may be some room
for improvement for ATOMIC20

20. Unlike the ATOMIC20
20’s

HasSubEvent label that successfully joins together CON-
CEPTNET’s HAS(FIRST/LAST)SUBEVENT labels for an
improved accuracy, ATOMIC20

20’s MadeUpOf union of
MadeOf, PartOf, and a subset of HasA, did not seem to
have resulted in improved quality. The rest of the ATOMIC20

20
cognates see a significantly higher or similar accuracy in
comparison to CONCEPTNET.

Coverage Assessment
We make a pairwise comparison between the CSKGs to as-
sess their coverage with regards to the commonsense knowl-
edge they contain. For a reliable head-to-head comparison,
we map relations and tuples between various KGs.

Mapping Relations. Since ATOMIC20
20 is built on existing

ATOMIC relations, we primarily need to align relations be-
tween ATOMIC20

20 and CONCEPTNET. We carefully align
them based on the definitions for the labels as supplied by
the two graphs, then the resulting alignment was verified by
sampling at random approximately 20 instances per relation.

Mapping Tuples. In order to resolve syntactic differences
in how the concepts are expressed in each of the KGs (e.g.,
ATOMIC’s “PersonX eats breakfast” vs. CONCEPTNET’s
“eat breakfast”), we preprocess each of the head and tail
concepts of each tuple in each KG in the following man-
ner: (1) the concept is lowercased and stripped of extra
spaces, punctuations, and stopwords; (2) any exact tuple du-
plicates within each KB removed, and (3) remaining content
words are lemmatized according to their POS category. For
ATOMIC and ATOMIC20

20, an extra step is added to remove
mentions of “PersonX”, “PersonY” and “PersonZ” if occur-
ring at the beginning of a string, and to replace with ‘person‘
if they occur elsewhere (e.g, “PersonX greets PersonY”).

Metrics. We use two metrics to evaluate the coverage of
knowledge graphs. For each pair of CSKGs, we compute
precision and recall with respect to a target KG. Coverage

(moderate agreement; Fleiss 1971).



Target KB→

Source KB↓ ATOMIC CN T-OMCS ATOMIC20
20

ATOMIC - 0.1 0.0 100.0
CONCEPTNET 0.3 - 5.5 45.6
TRANSOMCS 0.0 0.4 - 0.3
ATOMIC20

20 60.2 9.3 1.4 -

Table 4: Coverage Precision - Average number of times (in
%) a tuple in Source KB is found in Target KB.

Target KB→

Source KB↓ ATOMIC CN T-OMCS ATOMIC20
20

ATOMIC - 0.3 0.0 60.1
CONCEPTNET 0.1 - 0.3 8.9
TRANSOMCS 0.0 7.6 - 1.3
ATOMIC20

20 100.1† 47.8 0.4 -

Table 5: Coverage Recall - Average number of times (in %)
a tuple in Target KB is found in Source KB. †This value is
greater than 100 because multiple tuples in ATOMIC20

20 can
map to the same tuple in ATOMIC.

precision assesses the proportion of tuples in the source KG
that are correct according to tuples in the target KG. Cover-
age recall reflects the proportion of tuples in the target KB
that the tuples in the source KB successfully recalled.

Results. Tables 4 and 5 show a pairwise coverage preci-
sion and recall assessment among the CSKGs. ATOMIC20

20
shows the widest coverage: ATOMIC20

20 is able to recall all of
ATOMIC (as expected) and just under half of CONCEPTNET.
There is very little overlap between ATOMIC and CONCEPT-
NET, which is unsurprising as all of ATOMIC knowledge is
focused on social behaviors CONCEPTNET does not cover
while CONCEPTNET leans on physical commonsense which
falls outside ATOMIC’s scope. Overall, TRANSOMCS inter-
sects very little with any of the other three KBs.

5 Neural Knowledge Graph Comparison
Language models are powerful tools for representing knowl-
edge, but their ability to serve as generative knowledge bases
is limited by the fact they are directly trained to represent the
distribution of language. Previous work shows knowledge
graphs can help language models better transfer as knowl-
edge engines (Bosselut et al. 2019) by re-training them on
examples of structured knowledge. As a result, a new pur-
pose for knowledge graphs is to be useful in helping lan-
guage models generalize to hypothesizing knowledge tuples.

Experimental Setup. To evaluate whether knowledge
graphs can help language models effectively transfer to
knowledge models, we train different pretrained language
models on the knowledge graphs described in Section 4,
which we describe below:
GPT2 (Radford et al. 2019) is a Transformer (Vaswani et al.
2017) based language model. In our experiments, we use the
largest GPT2 model, GPT2-XL, that has 1.5B parameters.

KG Model Accept Reject No
Judgm.

ATOMIC20
20

GPT2-XL 36.6 62.5 0.9
GPT-3 73.0 24.6 2.5
COMET(GPT2-XL) 72.5 26.6 0.9
COMET(BART) 84.5 13.8 1.7

GPT2-XL 38.3 61.2 0.4
ATOMIC COMET(GPT2-XL) 64.1 34.7 1.2

COMET(BART) 83.1 15.3 1.6

GPT2-XL 50.3 42.1 7.7
CONCEPTNET COMET(GPT2-XL) 74.5 19.0 6.4

COMET(BART) 75.5 17.9 6.6

GPT2-XL 28.7 53.5 17.8
TRANSOMCS COMET(GPT2-XL) 26.9 60.9 12.2

COMET(BART) 23.8 65.9 10.3

Table 6: Human evaluation of generation accuracy (%). Each
model uses greedy decoding to generate the tail of 5K
randomly-sampled test prefixes (head, relation) from each
knowledge graph. GPT2-XL, GPT-3 and BART have 1.5B,
175B and 440M parameters, respectively.

We fine-tune GPT2-XL on each of our CSKGs to predict
the tail of a tuple (e.g., wheat) given the head (e.g., bread)
and a relation (e.g., MadeUpOf). The hyperparameter set-
tings used for training are described in more detail in Ap-
pendix C. Additionally, we use GPT2-XL in a zero-shot
setting as a baseline to measure the effect of transfer learning
on knowledge graphs. For fair comparison, we convert each
relation manually to an English language prompt expecting
the tail of each tuple as output generated by the model.
BART (Lewis et al. 2020) is a Bidirectional and Autoregres-
sive Transformer, an adaptation from BERT (Devlin et al.
2019) that is better suited for natural language generation
(e.g., translation, summarization). Additional training de-
tails are provided in Appendix C.
GPT-3 (Brown et al. 2020) is an autoregressive language
model that has 175B (over 100X more parameters than
GPT2-XL) parameters and is trained on a corpus of web
text. We use the GPT-3 API to prime the language model
to generate the tail for a given prefix – (head, relation) pair.
Thus, GPT-3 is evaluated in a few-shot setting. Additional
details of our implementation are provided in Appendix C.

Evaluation Setup. To assess language-to-knowledge trans-
fer capabilities, we evaluate how language models general-
ize to new, unseen entities, concepts, or events. We split each
knowledge graph into training, validation, and test sets such
that the heads of the knowledge tuples do not overlap be-
tween these sets. This adversarial split forces the language
models to generalize the relationships they learn from train-
ing on the knowledge graphs to the entities learned during
language pretraining. Also, to avoid overpopulating the val-
idation and test sets with generic heads (e.g., “I”, “You”,
“He”, “We”, and “They” collectively account for over 2.2M
tuple heads in TRANSOMCS), we enforce that the head of
any knowledge tuple in the dev and test sets is involved in at



Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr BERT Score

ATOMIC20
20

GPT2-XL 0.101 0.028 0.010 0.003 0.082 0.098 0.047 0.395
GPT-3 0.299 0.153 0.081 0.048 0.182 0.255 0.175 0.540
COMET(GPT2-XL) 0.407 0.248 0.171 0.124 0.292 0.485 0.653 0.638
COMET(BART) 0.469 0.286 0.189 0.130 0.330 0.495 0.658 0.639

ATOMIC
GPT2-XL 0.083 0.029 0.011 0.005 0.081 0.087 0.045 0.386
COMET(GPT2-XL) 0.419 0.296 0.228 0.189 0.292 0.517 0.733 0.634
COMET(BART) 0.515 0.324 0.220 0.159 0.347 0.546 0.740 0.646

CONCEPTNET
GPT2-XL 0.044 0.012 0.004 0.002 0.064 0.057 0.050 0.389
COMET(GPT2-XL) 0.155 0.119 0.095 0.078 0.134 0.193 0.425 0.552
COMET(BART) 0.172 0.111 0.072 0.049 0.130 0.184 0.368 0.535

TRANSOMCS
GPT2-XL 0.028 0.001 0.000 0.000 0.093 0.053 0.013 0.351
COMET(GPT2-XL) 0.301 0.000 0.000 0.000 0.180 0.302 0.254 0.677
COMET(BART) 0.351 0.170 0.003 0.000 0.198 0.352 0.297 0.678

Table 7: Automated metrics for the quality of the tail generations of the GPT2-XL language model and the knowledge models
COMET(GPT2-XL) and COMET(BART). Each approach uses greedy decoding for sampled 5k test prefixes for each KG.
The 5k prefixes correspond to the ones for the human eval. Similar results are obtained on the full test sets (cf. Appendix C).

most 500 tuples. Finally, we remove low-quality tuples from
TRANSOMCS by imposing a confidence score of ≥ 0.5.

We score the tuples generated by these knowledge models
using common evaluation metrics for text generation: BLEU
(Papineni et al. 2002), ROUGE (Lin 2004), CIDEr (Vedan-
tam, Lawrence Zitnick, and Parikh 2015), and BERT Score
(Zhang et al. 2020b). For a subset of 5000 generated tuples
from the test set of each knowledge graph, we also run the
same human evaluation described in Section 4.

Results. We present our main results in Tables 6 and 7.
First, we note the large divide between the zero-shot GPT2-
XL model that produces commonsense knowledge without
any fine-tuning and the two COMET models across the
ATOMIC20

20, ATOMIC, and CONCEPTNET knowledge graphs
(Table 6). This large gap indicates that language models can
benefit from learning facts from commonsense knowledge
graphs. They do not have the means to precisely express this
knowledge directly from just pretraining on language. This
observation is supported by the gaps between these models
in the automatic evaluations (Table 7), as well. Additionally,
human evaluation of GPT-3 (Table 6) shows a ∼12 point
deficit compared to the performance of COMET(BART),
in spite of GPT-3 (175B) having over ∼430 times more pa-
rameters than COMET(BART) (406M). Similarly, we see
a large gap in performance across all automated metrics in
Table 7. The performance gap indicates that high-quality
declarative knowledge is valuable even after the advent of
extreme scale language models.

In addition to this main result, two particularly interest-
ing observations emerge. First, we note that the gap be-
tween the zero-shot model and COMET is larger on the
ATOMIC20

20 and ATOMIC knowledge graphs, than on CON-
CEPTNET, supporting the reflection that ATOMIC20

20 supports
categories of knowledge that are more difficult to learn from
pretraining. Second, the results on the human evaluation
show that COMET models trained on TRANSOMCS are
not able to generalize knowledge to new entities, implying

that language models benefit more from accurate knowledge
examples, which TRANSOMCS lacks (cf. §4).

6 Discussion
Do pretrained language models already encode com-
monsense knowledge? Our conclusions on this subject
are mixed and hinge on the ambiguous meaning of what
it means to encode knowledge. Despite the conclusions
of prior work (Petroni et al. 2019; Roberts, Raffel, and
Shazeer 2020; Tamborrino et al. 2020), our results in Ta-
ble 6 are clear that language models fail to express large
varieties of knowledge when prompted for it in a zero-shot
manner. When converted to COMET models by training
on a knowledge graph, their performance at hypothesizing
knowledge tuples skyrockets – 47.9% absolute difference
between COMET(BART) and GPT2-XL on ATOMIC20

20.
However, the evaluation tuples are adversarially selected

to not include head entities that were in the training set. The
model must generalize its learned representations of rela-
tions to entities it has not observed these relationships for
during fine-tuning, meaning the representation of these en-
tities is solely formulated from learning language. As a re-
sult, language models may still encode this knowledge in
their parameters, even if they are not capable of expressing
it directly. With this framing in mind, the COMET train-
ing paradigm proposed by Bosselut et al. (2019) can per-
haps be viewed less as a means of learning knowledge from
KGs, and more as a method of learning an interface for lan-
guage models to hypothesize encoded knowledge through
language generation. We look forward to future work in this
space that attempts to disentangle these two ideas.

What considerations should be made when designing
commonsense knowledge resources? Based on our results
in Section 5, we outline desiderata for the design and devel-
opment of future commonsense knowledge graphs. Because
certain types of knowledge are already encoded and express-
ible by pretrained language models, CSKG designers should



focus on collecting examples and categories of knowledge
that are less likely to be known by language models. For
example, of the 378 test tuples evaluated by the GPT2-XL
zero-shot model that contained the HinderedBy relation,
only 1.3% were deemed plausible by human raters – jump-
ing to 85% plausibility for COMET(BART) – pointing to
an advantage in constructing ATOMIC20

20 with this relation-
ship in mind (see Appendix C for per-relation accuracy.).

Second, commonsense knowledge resources should be
designed with the goal of accuracy and relationship cover-
age. Because language models exhibit powerful adaptation
(Brown et al. 2020), they can generalize many common-
sense relationships as long they have examples on which to
train. Consequently, we should construct commonsense re-
sources that encapsulate larger numbers of relations so the
knowledge in pretrained language models can be grounded
to a variety of relationships. However, language models also
benefit from learning from precise examples. Being able to
train on a large collection of examples from TRANSOMCS
(see Appendix C) did not allow COMET models to gener-
alize to unseen entities as these examples were not of suf-
ficient quality (See Table 2). Resources should be carefully
validated for the quality of their facts, an example set by
Speer, Chin, and Havasi (2017) and Sap et al. (2019).

7 Conclusion
In this work, we formalize a use for commonsense knowl-
edge graphs as transfer learning tools for pretrained lan-
guage models. With this new purpose, we hypothesize that
commonsense knowledge graphs should be designed to con-
tain knowledge that is not already expressible by language
models without difficulty (e.g., not taxonomic and lexical
knowledge). Consequently, we propose ATOMIC20

20, a novel
commonsense knowledge graph containing tuples whose re-
lations are specifically selected to be challenging for pre-
trained language models to express. Our empirical studies
demonstrate that ATOMIC20

20 contains high-accuracy knowl-
edge tuples across multiple novel relations not found in ex-
isting CSKGs or expressible by LMs. Furthermore, we show
that ATOMIC20

20 can be effectively used as a training set for
adapting language models as knowledge models to generate
high quality tuples on-demand.
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Tamborrino, A.; Pellicanò, N.; Pannier, B.; Voitot, P.; and
Naudin, L. 2020. Pre-training Is (Almost) All You Need:
An Application to Commonsense Reasoning. In ACL.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in Neural Information
Processing Systems.

Vedantam, R.; Lawrence Zitnick, C.; and Parikh, D. 2015.
Cider: Consensus-based image description evaluation. In
CVPR, 4566–4575.

Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.;
Michael, J.; Hill, F.; Levy, O.; and Bowman, S. R. 2019. Su-
perGLUE: A Stickier Benchmark for General-Purpose Lan-
guage Understanding Systems. ArXiv abs/1905.00537.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu,
J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest,

Q.; and Rush, A. M. 2019. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. ArXiv
abs/1910.03771.
Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; and Choi,
Y. 2019. HellaSwag: Can a Machine Really Finish Your
Sentence? In ACL.
Zhang, H.; Khashabi, D.; Song, Y.; and Roth, D. 2020a.
TransOMCS: From Linguistic Graphs to Commonsense
Knowledge. In IJCAI.
Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K.; and Artzi, Y.
2020b. BERTScore: Evaluating Text Generation with BERT.
ArXiv abs/1904.09675.



A ATOMIC 2020 Details
ATOMIC20

20 Relations
In this section we detail the relations in ATOMIC20

20. Fig-
ure 3 shows the hierarchical breakdown of the ATOMIC20

20
relation labels. While there is no internal structure directly
encoded for ATOMIC20

20 relations, they fall into three natural
categories based on their meaning: physical-entity, social-
interaction and event-centered commonsense.

Physical-Entity Commonsense. Physical-entity common-
sense deals with inferential knowledge about common enti-
ties and objects. Physical commonsense such as these is cru-
cial for interacting with the world: allowing us to distinguish
the dangerous (e.g., “fire can be painful”) from the harmless
(e.g., “teddy bears are comforting”), manipulate objects for
our use (e.g., “helmets protect head”), and solve problems
(e.g., “how do I open this door?”). We identify seven rela-
tions under this category.

• ObjectUse describes everyday affordances or uses of
objects, and includes both typical and atypical uses. For
example, “popcorn bucket” can typically be used to “hold
popcorn” but it could also serve “as a hat” in atypical sit-
uations.

• MadeUpOf and HasProperty, two property rela-
tions, denote the relationship between an entity and its
composition or characteristics. MadeUpOf describes a
part, portion or makeup of an entity. For example, “cake”
can be MadeUpOf “eggs” (composition/ingredient) or
“icing” (part/portion). Similarly, HasProperty usually
describes entities’ general characteristics such as “rose”
is “red,” subjective attributes such as “thirst” is “uncom-
fortable.” In certain case, the relation can also map to de-
scriptors that speak to the substance or value of items such
as “meat” has property of being “stored in the freezer” or
“bike” is “powered by person’s legs.”

• AtLocation is a spatial relation that describes the lo-
cation in/on/at which an entity is likely to be found (e.g.
“gambler” can be found in “casino,” “wrench” can be
found in “garage”).

• CapableOf is designed to describe abilities and capa-
bilities of everyday living entities (e.g., humans, animals,
insects) and natural entities that can exert a force (e.g. sun,
storms). CapableOf includes general capabilities such
as a “human” is capable of “thinking and reasoning” or
“drinking coffee.” It also includes specialized capabilities
such as a “surgeon” is capable of “operating on a patient.”

• Desires and NotDesires are relations that deal with
desires8 of sentient entities; e.g., “doctors” likely desire
to “cure patient” but do not desire “malpractice suit.”

8Since desire relations are about cognitive states of sentient be-
ings, they also provide a degree of commonsense about social-
interaction. However, we point out that these relations indicate
generic characterizations of animate entities rather than describing
situationally-based cognitive mental states (e.g., X being ‘encour-
aged’ only applies to the event it is situated in). For this reason, we
include these relations under physical-entity commonsense.

Social-Interaction Commonsense. Social-interaction rela-
tions comment on socially-triggered states and behaviors.
Social commonsense is useful for gauging people’s inten-
tions and purpose, and predicting situationally-relevant hu-
man reactions and behaviors. Following the definitions for
ATOMIC relations (Sap et al. 2019), we identify a total of
nine relations within this category.

• Three mental state relations address the emotional or
cognitive states of the participants in a given event.
xIntent defines the likely intent or desire of an agent
(X) behind the execution of an event. Given the head “X
gives Y gifts,” an xIntent might be that X wanted “to
be thoughtful.” Relations xReact and oReact define
the emotional reactions on the part of X or other partici-
pants in an event. As a result of gift giving, X might feel
“good about [one]self” and others (in this case, Y) might
feel “appreciated.”

• Five behavioral relations address the socially relevant re-
sponses to an event. xNeed describes a precondition for
X achieving the event. For example, in order for X to
give Y gifts, X must first “buy the presents.” xWant and
oWant are postcondition desires on the part of X and
others, respectively. As a result of X giving Y gifts, X
may also desire “to hug [Y]” and Y may want to “open
the gift.” xEffect and oEffect are social actions that
may occur after the event: X may “get hugged” and Y may
“blush” in response.

• The last relation xAttr describes X’s persona or at-
tribute as perceived by others given an event. In the gift
giving example, X may be seen as “generous” or “giv-
ing.” In contrast, in an event such as “X steals a car,” X
may be perceived as “evil.”

Event-Centered Commonsense. While social-interaction
commonsense gauges human behaviors and mental states
given an event, the event-centered commonsense provides
intuitions about how common events are related to one an-
other. Commonsense about event interaction is useful for un-
derstanding likely causes and effects of events in the world.
This knowledge allows humans to strategize and explore the
best solutions for their objectives, make contingency plans,
and revise goals when circumstances deviate from expecta-
tion. There are seven relations that fall under this category.

• We group three relations under force dynamics.9
This group conceptualizes dynamic interactions between
events with regards to exerted causal forces and im-
pelled actions. Causes specifically captures the causal
relation between two events or entities – e.g. an “acci-
dent” can cause “injury.” Causes does have some over-
lap with behavioral relations such as xEffect in that
they are postconditions of an event, but the postcondition
in Causes is not socially triggered and can exist out-
side human control (e.g., “bad weather” causes “power

9For a discussion of force dynamics in cognitive linguistic and
lexical semantic literature cf. Herskovits (2009); Landau and Jack-
endoff (1991); Talmy (1988).
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Figure 3: ATOMIC20
20 relations organized into a hierarchical structure.

outages”). HinderedBy introduces hindrances that ob-
struct the natural path to the achievement of a goal. For
example, the event “X adopts a cat” can be obstructed if
“X is allergic to cats.” xReason provides a post-fact ex-
planation of the cause of an event (e.g., why one has to
“walk” could be explained by “car has broken down”),
which is related to, but distinct from, xIntent’s inten-
tions (i.e., “X walks” because X wanted to “go home”).

• Three relations provide reasoning about event scripts or
sequences. isAfter and isBefore introduce events
that can precede or follow an event, respectively. For ex-
ample, “X is in a hurry to get to work” can happen after
“X wakes up 15 minutes late” and before “X drives too
fast.” These relations are distinguished from behavioral
relations xNeed (pre-condition) and xEffect (post-
condition) in that isAfter and isBefore are tempo-
rally situated without specific regard to the need or reac-
tion of the person X. For example, “X pushes X’s luck”
can happen before “X gets a broken nose” but getting a
broken nose is not an action X intentionally may take af-
ter pushing one’s luck. Relation HasSubEvent provides
the internal structure of an event, each tail denoting a step
within the larger head event.

• The last relation in the event-centered category,
isFilledBy, provides a filler phrase for an event
with a blank that is sensical and commonly acceptable for
the event. For example, the blank in an event such as “X
catches in the act” can be commonly filled by entities
such as a “cheater,” a “burglar,” or a “mouse.”

ATOMIC20
20 Tuples

In this section, we detail the population of the ATOMIC20
20

tuples (see Table 1 for counts per relation).

Social-Interaction Tuples. For social-interaction relations,
we incorporated 877K tuples from ATOMIC, and crowd-
sourced an additional 34K tuples using the same approach
as Sap et al. (2019). The rest of this section will refer to the
head events in the social-interaction tuples as base events.

Crowdsourced Tuples. Tuples for relations ObjectUse,
HinderedBy, isFilledBy, isBefore and isAfter
were crowdsourced via Amazon Mechanical Turk. We paid
an average of $15 an hour for our crowdsourcing efforts.
We release all crowdsourcing templates as part of our code-
base.10

• For the collection of HinderedBy, we crowdsourced
over 100K event-hindrance tuples by prompting the work-
ers with base events from ATOMIC and eliciting reasons
why one may not be able to achieve the event. In order
to make the prompt events more worker-friendly, we pro-
cessed the events as a desire (e.g., “X adopts a cat”→ “X
wants to adopt a cat”).11 We specifically elicited personal
causes (e.g., “X is allergic to cats”), situational causes
(e.g., “there are no pet stores nearby”), and social causes
(e.g., “X’s landlord disallows pets”).

• 33K isFilledBy tuples were collected by presenting
workers with base events. The workers were asked to pro-
vide two (up to four) common objects or entities that will
make sense in the sentence.

• 46K tuples for isBefore and isAfter were collected
together as sequences of events. Given a base event, the
workers were asked to write a short 3-sentence story by

10http://anonymous
11To achieve this, we removed modal verbs, lemmatized the head

verb of the sentence, and inserted a ‘want to’ phrase before the verb.



CONCEPTNET ATOMIC20
20

AtLocation AtLocation
CapableOf CapableOf
Causes Causes, xEffect
CausesDesire xWant
Desires Desires
MadeOf MadeUpOf
HasProperty HasProperty
HasA MadeUpOf, HasProperty
HasPrerequisite xNeed
HasSubevent HasSubEvent
HasFirstSubevent HasSubEvent
HasLastSubevent HasSubEvent
NotDesires NotDesires
MotivatedByGoal xIntent, xReason
PartOf MadeUpOf
UsedFor ObjectUse
ReceivesAction MadeUpOf, AtLocation,

Causes, ObjectUse

Table 8: CONCEPTNET relations mapped to ATOMIC20
20 re-

lations. For labels mapping to multiple ATOMIC20
20 relations,

the one that received the majority mapping is bolded.

providing a preceding and following event. The work-
ers were given the option to opt out of writing a story if
they felt that the event they were given didn’t make sense
enough to create a story.

• As discussed in the main text (§3), 130K ObjectUse
tuples were crowdsourced by eliciting common objects
and their uses for every event in the collected event se-
quences. For each event, a worker was asked to provide
2-4 common items that were needed during the displayed
event. Atypical ObjectUse was collected in a second
pass, where for each collected unique object, the workers
were prompted with the object and asked to provide an
atypical, creative or resourceful use for the item shown.

Integration of CONCEPTNET Tuples. The tuples for the
remaining relations are populated through the integration of
the commonsense portion of CONCEPTNET. As discussed in
the main text, a select subset of CONCEPTNET(v5.7) tuples
(172K) were integrated into ATOMIC20

20.
The primary challenge in integrating CONCEPTNET tu-

ples into ATOMIC20
20 was in identifying knowledge that is

most likely to reflect commonsense information. CONCEPT-
NET(v5.7) contains tuples built on not only concept relation-
ships directly sourced from human informants, but also on
information pulled from other lexical sources such as Word-
Net (Miller 1995) and DBpedia (Auer et al. 2007), which
automatically extracts knowledge from Wikipedia articles
(Speer, Chin, and Havasi 2017). As a result, even those re-
lations that are designed to primarily represent common-
sense knowledge (i.e., the OMCS relations) include among
the mix, tuples that reflect factual or lexical co-occurrence
knowledge. These examples deviate from the type of knowl-
edge we would ideally consider as “commonsense,” i.e.,
qualitative experiential knowledge gained through subjec-
tive observation of and interaction with the world. Relations

Relations Human Readable Template

AtLocation located or found at/in/on
CapableOf is/are capable of
Causes causes
CausesDesire makes someone want
CreatedBy is created by
Desires desires
HasA has, possesses or contains
HasFirstSubevent BEGINS with the event/action
HasLastSubevent ENDS with the event/action
HasPrerequisite to do this, one requires
HasProperty can be characterized by being/having
HasSubEvent includes the event/action
HinderedBy can be hindered by
InstanceOf is an example/instance of
isAfter happens after
isBefore happens before
isFilledBy blank can be filled by
MadeOf is made of
MadeUpOf made (up) of
MotivatedByGoal is a step towards accomplishing the goal
NotDesires do(es) NOT desire
ObjectUse, UsedFor used for
oEffect as a result, Y or others will
oReact as a result, Y or others feels
oWant as a result, Y or others want
PartOf is a part of
ReceivesAction can receive or be affected by the action
xAttr X is seen as
xEffect as a result, PersonX will
xIntent because PersonX wanted
xNeed but before, PersonX needed
xReact as a result, PersonX feels
xReason because
xWant as a result, PersonX wants

Table 9: Human readable templates for each relation used
for crowdsourced human evaluations.

such as InstanceOf(“is instance/example of”) stands as a
case in point (e.g., “tortilla” is an example of “flatbread” or
“toffee” is an example of “candy”). While included within
the OMCS relations, the encoded information can be hard to
distinguish from the more accepted taxonomic relations such
as IsA (“is a kind/type of”).12 Relationships found in rela-
tions such as RelatedTo and DistinctFrom are too
underspecified with regards to the meaning they represent,
and for other relations such as LocatedNear, and negative
forms such as NotCapableOf or NotHasProperty,
the relationships amount to general lexical relationships.

Thus, the process of CONCEPTNET(v5.7) knowledge se-
lection (described in §3) was judiciously guided by three
competing priorities: when possible, we prioritized (1) qual-
itative commonsense over factual knowledge, (2) general
knowledge over highly specific knowledge (e.g., personal
names), and (3) meanings that are specific enough to be

12In fact, CONCEPTNET(v5.7) recognizes the similarities be-
tween IsA and InstanceOf and has accordingly deprecated
InstanceOf in favor of IsA. Nevertheless, InstanceOf is
still found in CONCEPTNET(v5.7).



meaningfully categorized. Since the ideal route of verifying
imported data via crowdsourcing can be resource-intensive,
we opted for an approach whereby relations were first se-
lected based on the data they represent; then tuples were
pruned based on heuristics that leverage lexical and syntactic
information of the concepts. As mentioned in the main text,
10% of the data selected for integration was validated by
crowdworkers, yielding a greater than 93% acceptance rate.
Three relations, namely HasProperty, CapableOf, and
MotivatedByGoal, were sent for instance-by-instance
crowdsourcing for the purpose of debiasing human-related
descriptions, and subdividing semantically distinct elements
within the category (e.g., MotivatedByGoal mapped to
xIntent and xReason). The resulting CONCEPTNET-to-
ATOMIC20

20 relation mapping details are shown in Table 8.

B Symbolic Knowledge Graph Details
Human Evaluation
Qualifying Crowdsource Workers. To ensure high-quality
annotations, we qualified a pool of 173 workers through a
paid qualification task that tested their ability to follow di-
rections and provide reasonable answers to the qualification
test. The qualification test contained 6 manually selected tu-
ples from ATOMIC and CONCEPTNET, including both easy
and tricky relations to annotate. A worker was qualified if
they provided 100% acceptable answers. Workers providing
5 of 6 correct answers were also accepted only when they
provided a reasonable written substantiation for their incor-
rect choice. Workers were paid an average of $15 per hour
for their evaluations.

Human Readable Relation Templates. Since the KB rela-
tion labels are rather telegraphic on their own, we used hu-
man readable language forms (based ATOMIC20

20 and CON-
CEPTNET definitions) for prompt display in crowdsourced
evaluations. The complete list is available in Table 9.

KB Accuracy & Coverage
In Table 2, what type of tuples generally end up with no
judgment? Tuples receiving no judgment fall into three gen-
eral categories: (1) either the head or the tail concept is too
specialized for the workers to judge without consulting ref-
erence (e.g., “klebsiella” is part of “bacteria,” “drug cock-
tail” made of “nucleoside reverse transcriptase inhibitor”);
(2) concepts refer to highly specific entities or referents (e.g.,
“singh” capable of “bring key,” “falkland island islas malv-
inas” part of “argentina”); and (3) Reject candidates that
workers have decided to hedge on (e.g., “dandelion” used
for “love,” “democrat” desires “matter”). Such tuples are
mostly found in TransOMCS, as evidenced by the high frac-
tion of tuples that received No Judgment at less than half of
ATOMIC20

20’s Accept rate (see 2).

Does the accuracy ratings breakdown for each KB pro-
vide further insights? A closer look at the raw accuracy rat-
ings shows an interesting emergent rating pattern across KBs
(Table 2). For all KBs with the exception of TRANSOMCS,
we observe that the majority of social-interaction Accept
originate from the sometimes/likely rating. However, such

preference is not seen in the physical-entity tuples, which
show a slightly higher tendency for the always/often rat-
ing. For event-centered tuples, ATOMIC20

20 favors the some-
times/likely, while CONCEPTNET does not. TRANSOMCS
shows highest ratings for the sometimes/likely and invalid
ratings, and the patterns are invariant across the board.

One additional point to mention is that ATOMIC20
20 social-

interaction and event-centered tuples proportionally contain
more of the human-crowdsourced commonsense knowledge
than the physical-entity category, which, with the sole ex-
ception of ObjectUse, includes tuples integrated from
CONCEPTNET graph. The observation that much of the
knowledge in ATOMIC20

20 is sometimes or likely true, re-
flects our intentional efforts to deprioritize factual informa-
tion over qualitative commonsense knowledge. More im-
portantly, it shows that most of the knowledge within the
ATOMIC20

20 graph can be, under the right circumstances, de-
feasible. That is, one can pose a likely hypothesis that a hin-
drance to “X writes stories” is that “X can’t read;” however,
such a hypothesis can be defeated if we also know that X has
written stories before. We find that such context-dependent
ambiguities are of more compelling interest to us, as certain-
ties may be better covered by language models.

C Neural Knowledge Graph Details

Dataset Split. Table 10 reports the number of tuples for each
three-way split (train/dev/test) of each knowledge graph.
The ATOMIC20

20 split preserves the splits from ATOMIC and
CONCEPTNET: any tuple in ATOMIC20

20 that appears in the
train (resp. dev, test) set of ATOMIC or CONCEPTNET be-
longs to the train (resp. dev, test) set of ATOMIC20

20. Overall,
ATOMIC20

20 provides over 50% more tuples than the initial
version ATOMIC.

Knowledge Graph Train Dev Test All
ATOMIC20

20 1,076,880 102,024 152,209 1,331,113
ATOMIC 709,993 79,599 87,480 877,072
CONCEPTNET 264,791 5,000 30,209 300,000
TRANSOMCS 5,424,478 10,243 100,033 5,534,754

Table 10: Number of tuples per KB and per split.

Details about GPT2-XL Training. GPT2-XL (Radford
et al. 2019) is a transformer language model trained on 8
million webpages (∼40G of text data). We finetune the lan-
guage model on each commonsense knowledge graph by
converting a tuple into a formatted text input – e.g. <head>
<relation> [GEN] <tail> [SEP]. where [GEN]
and [SEP] are special delimiter tokens that indicate the start
and end of the tail of a given relation for a given head entity
/ event. At inference time, the head and relation of a tuple
are given as input and the model’s generation following the
[GEN] token is recorded as its prediction of the tail entity.
We finetuned GPT2-XL on each CSKG for one epoch, using
a batch size of 32 and a learning rate of 5e− 5 on an Nvidia
RTX-8000 GPU. The final trained models for each CSKG
will be publicly released as part of our code release. In Fig-
ure 5, we include a few examples of COMET(GPT2-XL)
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Figure 4: Percentage distribution of raw accuracy ratings broken down by KB (i.e., breakdown of Table 2). From left to right
are the ratings for social-interaction tuples, physical-entity tuples, and event-centered tuples. We use the CONCEPTNET-to-
ATOMIC20

20 relation mappings (shown in Table 8) to categorize CONCEPTNET and TRANSOMCS relations into the three cat-
egories. For multiple mappings, we map the CONCEPTNET/TRANSOMCS labels to the majority mapped label (in bold in
Table 8). Note that the latter two figures do not include ATOMIC as the KB only includes social-interaction relations.

Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr BERT Score

ATOMIC20
20

COMET(GPT2-XL) 0.401 0.247 0.168 0.123 0.288 0.473 0.620 0.632
COMET(BART) 0.462 0.280 0.182 0.124 0.325 0.486 0.632 0.636

ATOMIC
COMET(GPT2-XL) 0.429 0.300 0.225 0.187 0.297 0.527 0.754 0.638
COMET(BART) 0.521 0.330 0.225 0.164 0.351 0.552 0.766 0.650

CONCEPTNET
COMET(GPT2-XL) 0.152 0.115 0.092 0.080 0.131 0.193 0.421 0.552
COMET(BART) 0.169 0.108 0.069 0.046 0.127 0.180 0.350 0.532

TRANSOMCS COMET(GPT2-XL) 0.298 0.000 0.000 0.000 0.179 0.300 0.249 0.677
COMET(BART) 0.351 0.216 0.004 0.000 0.201 0.352 0.298 0.681

Table 11: Automated metrics for the quality of the tail generations for the knowledge models COMET(GPT2-XL) and
COMET(BART). Each approach uses greedy decoding for all test prefixes for each KG. Similar results were obtained on
the 5K sampled prefixes that were randomly selected for the human evaluation (see Table 7).

trained on ATOMIC20
20.

Details about BART Training. BART (Lewis et al. 2020)
is a denoising sequence-to-sequence pretrained language
model. Similar to previous transformer-based language
models (Devlin et al. 2019), BART’s pretraining objective
is to recover its input, which is corrupted through various
strategies such as token and span masking, and sentence
permutation. For pretraining, BART uses a 160GB free-text
dataset drawn from news, books, stories, and web texts. We
used the BART-large version of the model,13 which has 24
layers, 1024-dimensional hidden states, 16 attention heads
in its self-attention layers, and 406M total parameters. For
hyper-parameter search, we fine-tuned BART on each com-
monsense knowledge graph for one epoch with batch sizes
{64, 32, 16}, learning rates {1e-3, 1e-5, 1e-7}, and three
random seeds.

Details about GPT-3 Evaluation. We evaluate GPT-3
(Brown et al. 2020) using OpenAI’s language completion
API. Similar to zero-shot evaluation on GPT2-XL, we use
templates to evaluate the ability of the language model to
generate a tail given the head and relation. We use the same
templates as GPT2-XL. For priming examples, we prime
each relation with 5 examples of heads and tails per relation,

13from HuggingFace’s implementation (Wolf et al. 2019).

randomly selected from relations in the training set. We ran
3 random seeds to select priming examples to avoid spelling
mistakes and other fragments from data collection. We ran
with temperature 0.4.

Additional Automated Evaluation. In order to have a di-
rect comparison between automated and human evaluations,
we report in Section 5 the automated metrics on the same test
subsets that were used for human evaluation. For complete-
ness, in this section, we provide the automated evaluation
results on the full test sets (Table 11). These results confirm
the findings of Section 5.



Head Relation Human COMET (GPT2 XL) COMET (BART)

PersonX accepts 
PersonY’s apology

xIntent (Intent of 
PersonX)

To feel peaceful with 
PersonY

To be kind To be forgiving

PersonX accepts 
PersonY’s apology

HinderedBy
PersonY has not 

apologized
PersonX is stubborn PersonX is too angry

PersonX accepts 
PersonY’s apology

oReact (Reaction of 
PersonY)

Happy Relieved Happy

PersonX does yard 
work

isAfter PersonX is off today
PersonX gets home 

from work
PersonX gets a job as 

a gardener

PersonX does yard 
work

isBefore
PersonX is proud of 
being productive

PersonX gets paid
PersonX takes a 

shower

PersonX abuses 
PersonX’s power

xAttr (attribute of 
PersonX)

Out of line Mean Mean

PersonX abuses 
PersonX’s power

xWant (Want of 
personX)

Harass employees To get their way To be in control

Common sense ObjectUse Prevent mistakes
Understand the 

situation
Make a good decision

Move car HasSubEvent Open car door Turn steering wheel Get out of car

PersonX loses 
PersonY's wallet

xWant (Want of 
PersonX)

To get the wallet To apologize to find the wallet

PersonX breaks the 
news to PersonY

oWant (Want of 
PersonY)

to cry to cry to cry

family photograph AtLocation relatives house Photograph book Family room

mouse HasProperty Whiskers Four legs Long tail

bird lover CapableOf
listen to mockingbird 

sing
watch birds fly Look at birds

Figure 5: Example generations of models on relations from ATOMIC20
20. Red, purple and green rows represent social-interaction

commonsense, event-centered commonsense, and physical-entity commonsense, respectively.



D Additional Reproducibility Items
All experiments were conducted on a cluster with 8 GPUs
of type NVIDIA Quadro RTX 8000 with 48 GB of GDDR6
memory each. To allow replication of results, whenever pos-
sible, a default, fixed value was assigned to the random
seed that initializes the pseudo-random number generator, as
specified in the source code. The details of the experimen-
tation of the models (i.e. GPT2-XL and BART), including
their hyper-parameter settings, are described in Appendix C.
All the data as well as the source code required for conduct-
ing experiments will be made publicly available upon publi-
cation.
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happens before

happens after

happens after
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before
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before

before, 
X needs
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in the act

X leaves a bad 
reviewX takes ___ 

to a pawn shop

X gets away with crime

before, 
X needs

X drives too fastaccident

careless

criminal shady

risky
gambler

Figure 6: A snapshot of commonsense knowledge relationships in ATOMIC20
20. Gray nodes represent events. Red, purple and

green nodes represent social-interaction commonsense, event-centered commonsense, and physical-entity commonsense, re-
spectively. Rest of the colors represent intersection of the categories.


